Authors

* External authors

Venue

Date

Share

Calibrated Federated Adversarial Training with Label Skewness

Chen Chen

Yuchen Liu*

Xingjun Ma*

Lingjuan Lyu

* External authors

NeurIPS 2022

2022

Abstract

Recent studies have shown that, like traditional machine learning, federated learning (FL) is also vulnerable to adversarial attacks.To improve the adversarial robustness of FL, few federated adversarial training (FAT) methods have been proposed to apply adversarial training locally before global aggregation. Although these methods demonstrate promising results on independent identically distributed (IID) data, they suffer from training instability issues on non-IID data with label skewness, resulting in much degraded natural accuracy. This tends to hinder the application of FAT in real-world applications where the label distribution across the clients is often skewed. In this paper, we study the problem of FAT under label skewness, and firstly reveal one root cause of the training instability and natural accuracy degradation issues: skewed labels lead to non-identical class probabilities and heterogeneous local models. We then propose a Calibrated FAT (CalFAT) approach to tackle the instability issue by calibrating the logits adaptively to balance the classes. We show both theoretically and empirically that the optimization of CalFAT leads to homogeneous local models across the clients and better convergence point.

Related Publications

Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Model

WWW, 2025
Jie Ren, Kangrui Chen, Chen Chen, Vikash Sehwag, Yue Xing, Jiliang Tang, Lingjuan Lyu

Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …

Exploit Gradient Skewness to Circumvent Byzantine Defenses for Federated Learning

AAAI, 2025
Yuchen Liu*, Chen Chen, Lingjuan Lyu, Yaochu Jin, Gang Chen*

Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

  • HOME
  • Publications
  • Calibrated Federated Adversarial Training with Label Skewness

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.