Authors
- Jiaqian Ren*
- Lei Jiang*
- Hao Peng*
- Lingjuan Lyu
- Zhiwei Liu*
- Chaochao Chen*
- Jia Wu*
- Xu Bai*
- Philip S. Yu*
* External authors
Venue
- CIKM
Date
- 2022
Cross-Network Social User Embedding with Hybrid Differential Privacy Guarantees
Jiaqian Ren*
Lei Jiang*
Hao Peng*
Zhiwei Liu*
Chaochao Chen*
Jia Wu*
Xu Bai*
Philip S. Yu*
* External authors
CIKM
2022
Abstract
Integrating multiple online social networks (OSNs) has important implications for many downstream social mining tasks, such as user preference modelling, recommendation, and link prediction. However, it is unfortunately accompanied by growing privacy concerns about leaking sensitive user information. How to fully utilize the data from different online social networks while preserving user privacy remains largely unsolved. To this end, we propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way. We jointly consider information from partially aligned social networks with differential privacy guarantees. In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types. Next, to find user linkages across social networks, we make unsupervised user embedding-based alignment in which the user embeddings are achieved by the heterogeneous network embedding technology. To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users. Extensive experiments on three real-world datasets demonstrate that our approach makes a significant improvement on user interest prediction tasks as well as defending user attribute inference attacks from embedding.
Related Publications
Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …
Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…
The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.