* External authors




Cross-Network Social User Embedding with Hybrid Differential Privacy Guarantees

Jiaqian Ren*

Lei Jiang*

Hao Peng*

Lingjuan Lyu

Zhiwei Liu*

Chaochao Chen*

Jia Wu*

Xu Bai*

Philip S. Yu*

* External authors




Integrating multiple online social networks (OSNs) has important implications for many downstream social mining tasks, such as user preference modelling, recommendation, and link prediction. However, it is unfortunately accompanied by growing privacy concerns about leaking sensitive user information. How to fully utilize the data from different online social networks while preserving user privacy remains largely unsolved. To this end, we propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way. We jointly consider information from partially aligned social networks with differential privacy guarantees. In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types. Next, to find user linkages across social networks, we make unsupervised user embedding-based alignment in which the user embeddings are achieved by the heterogeneous network embedding technology. To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users. Extensive experiments on three real-world datasets demonstrate that our approach makes a significant improvement on user interest prediction tasks as well as defending user attribute inference attacks from embedding.

Related Publications

Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?

NeurIPS, 2023
Xiaoxiao Sun*, Nidham Gazagnadou, Vivek Sharma, Lingjuan Lyu, Hongdong Li*, Liang Zheng*

Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Image…

UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition

NeurIPS, 2023
Yuyuan Li*, Chaochao Chen*, Yizhao Zhang*, Weiming Liu*, Lingjuan Lyu, Xiaolin Zheng*, Dan Meng*, Jun Wang*

With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearn…

Towards Personalized Federated Learning via Heterogeneous Model Reassembly

NeurIPS, 2023
Jiaqi Wang*, Xingyi Yang*, Suhan Cui*, Liwei Che*, Lingjuan Lyu, Dongkuan Xu*, Fenglong Ma*

This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneo…

  • HOME
  • Publications
  • Cross-Network Social User Embedding with Hybrid Differential Privacy Guarantees


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.