Authors
- Jiaqian Ren*
- Lei Jiang*
- Hao Peng*
- Lingjuan Lyu
- Zhiwei Liu*
- Chaochao Chen*
- Jia Wu*
- Xu Bai*
- Philip S. Yu*
* External authors
Venue
- CIKM
Date
- 2022
Cross-Network Social User Embedding with Hybrid Differential Privacy Guarantees
Jiaqian Ren*
Lei Jiang*
Hao Peng*
Zhiwei Liu*
Chaochao Chen*
Jia Wu*
Xu Bai*
Philip S. Yu*
* External authors
CIKM
2022
Abstract
Integrating multiple online social networks (OSNs) has important implications for many downstream social mining tasks, such as user preference modelling, recommendation, and link prediction. However, it is unfortunately accompanied by growing privacy concerns about leaking sensitive user information. How to fully utilize the data from different online social networks while preserving user privacy remains largely unsolved. To this end, we propose a Cross-network Social User Embedding framework, namely DP-CroSUE, to learn the comprehensive representations of users in a privacy-preserving way. We jointly consider information from partially aligned social networks with differential privacy guarantees. In particular, for each heterogeneous social network, we first introduce a hybrid differential privacy notion to capture the variation of privacy expectations for heterogeneous data types. Next, to find user linkages across social networks, we make unsupervised user embedding-based alignment in which the user embeddings are achieved by the heterogeneous network embedding technology. To further enhance user embeddings, a novel cross-network GCN embedding model is designed to transfer knowledge across networks through those aligned users. Extensive experiments on three real-world datasets demonstrate that our approach makes a significant improvement on user interest prediction tasks as well as defending user attribute inference attacks from embedding.
Related Publications
Existing collaborative self-supervised learning (SSL) schemes are not suitable for cross-client applications because of their expensive computation and large local data requirements. To address these issues, we propose MocoSFL, a collaborative SSL framework based on Split Fe…
Knowledge Distillation (KD) is a typical method for training a lightweight student model with the help of a well-trained teacher model. However, most KD methods require access to either the teacher's training data or model parameter, which is unrealistic. To tackle this prob…
In real-world applications, deep learning models often run in non-stationary environments where the target data distribution continually shifts over time. There have been numerous domain adaptation (DA) methods in both online and offline modes to improve cross-domain adaptat…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.