Authors
- Yu Guo*
- Wen Liu*
- Jiangtian Nie*
- Lingjuan Lyu
- Zehui Xiong*
- Jiawen Kang*
- Han Yu*
- Dusit Niyato*
* External authors
Venue
- AAAI-2022, AI for Transportation Workshop
Date
- 2022
DADFNet: Dual Attention and Dual Frequency-Guided Dehazing Network for Video-Empowered Intelligent Transportation
Yu Guo*
Wen Liu*
Jiangtian Nie*
Zehui Xiong*
Jiawen Kang*
Han Yu*
Dusit Niyato*
* External authors
AAAI-2022, AI for Transportation Workshop
2022
Abstract
Visual surveillance technology is an indispensable functional component of advanced traffic management systems. It has been applied to perform traffic supervision tasks, such as object detection, tracking and recognition. However, adverse weather conditions, e.g., fog, haze and mist, pose severe challenges for video-based transportation surveillance. To eliminate the influences of adverse weather conditions, we propose a dual attention and dual frequency-guided dehazing network (termed DADFNet) for real-time visibility enhancement. It consists of a dual attention module (DAM) and a high-low frequency-guided sub-net (HLFN) to jointly consider the attention and frequency mapping to guide haze-free scene reconstruction. Extensive experiments on both synthetic and real-world images demonstrate the superiority of DADFNet over state-of-the-art methods in terms of visibility enhancement and improvement in detection accuracy. Furthermore, DADFNet only takes $6.3$ ms to process a 1,920*1,080 image on the 2080 Ti GPU, making it highly efficient for deployment in intelligent transportation systems.
Related Publications
Existing collaborative self-supervised learning (SSL) schemes are not suitable for cross-client applications because of their expensive computation and large local data requirements. To address these issues, we propose MocoSFL, a collaborative SSL framework based on Split Fe…
Knowledge Distillation (KD) is a typical method for training a lightweight student model with the help of a well-trained teacher model. However, most KD methods require access to either the teacher's training data or model parameter, which is unrealistic. To tackle this prob…
In real-world applications, deep learning models often run in non-stationary environments where the target data distribution continually shifts over time. There have been numerous domain adaptation (DA) methods in both online and offline modes to improve cross-domain adaptat…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.