Authors
- Jie Zhang*
- Chen Chen
- Bo Li*
- Lingjuan Lyu
- Shuang Wu*
- Shouhong Ding*
- Chunhua Shen*
- Chao Wu*
* External authors
Venue
- NeurIPS 2022
Date
- 2022
DENSE: Data-Free One-Shot Federated Learning
Jie Zhang*
Chen Chen
Bo Li*
Shuang Wu*
Shouhong Ding*
Chunhua Shen*
Chao Wu*
* External authors
NeurIPS 2022
2022
Abstract
One-shot Federated Learning (FL) has recently emerged as a promising approach, which allows the central server to learn a model in a single communication round. Despite the low communication cost, existing one-shot FL methods are mostly impractical or face inherent limitations, e.g. a public dataset is required, clients' models are homogeneous, and additional data/model information need to be uploaded. To overcome these issues, we propose a novel two-stage Data-freE oNe-Shot federated lEarning (DENSE) framework, which trains the global model by a data generation stage and a model distillation stage. DENSE is a practical one-shot FL method that can be applied in reality due to the following advantages: (1) DENSE requires no additional information compared with other methods (except the model parameters) to be transferred between clients and the server; (2) DENSE does not require any auxiliary dataset for training; (3) DENSE considers model heterogeneity in FL, i.e. different clients can have different model architectures. Experiments on a variety of real-world datasets demonstrate the superiority of our method. For example, DENSE outperforms the best baseline method Fed-ADI by 5.08% on CIFAR10 dataset. Our code will soon be available.
Related Publications
The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…
With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.