Authors

* External authors

Venue

Date

Share

DENSE: Data-Free One-Shot Federated Learning

Jie Zhang*

Chen Chen

Bo Li*

Lingjuan Lyu

Shuang Wu*

Shouhong Ding*

Chunhua Shen*

Chao Wu*

* External authors

NeurIPS 2022

2022

Abstract

One-shot Federated Learning (FL) has recently emerged as a promising approach, which allows the central server to learn a model in a single communication round. Despite the low communication cost, existing one-shot FL methods are mostly impractical or face inherent limitations, e.g. a public dataset is required, clients' models are homogeneous, and additional data/model information need to be uploaded. To overcome these issues, we propose a novel two-stage Data-freE oNe-Shot federated lEarning (DENSE) framework, which trains the global model by a data generation stage and a model distillation stage. DENSE is a practical one-shot FL method that can be applied in reality due to the following advantages: (1) DENSE requires no additional information compared with other methods (except the model parameters) to be transferred between clients and the server; (2) DENSE does not require any auxiliary dataset for training; (3) DENSE considers model heterogeneity in FL, i.e. different clients can have different model architectures. Experiments on a variety of real-world datasets demonstrate the superiority of our method. For example, DENSE outperforms the best baseline method Fed-ADI by 5.08% on CIFAR10 dataset. Our code will soon be available.

Related Publications

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning

NeurIPS, 2024
Jiaqi Wang*, Lingjuan Lyu, Fenglong Ma*, Qi Li

Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …

CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence

NeurIPS, 2024
Chaochao Chen*, Yizhao Zhang*, Lingjuan Lyu, Yuyuan Li*, Jiaming Zhang, Li Zhang, Biao Gong, Chenggang Yan

With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.