Authors

* External authors

Venue

Date

Share

DENSE: Data-Free One-Shot Federated Learning

Jie Zhang*

Chen Chen

Bo Li*

Lingjuan Lyu

Shuang Wu*

Shouhong Ding*

Chunhua Shen*

Chao Wu*

* External authors

NeurIPS 2022

2022

Abstract

One-shot Federated Learning (FL) has recently emerged as a promising approach, which allows the central server to learn a model in a single communication round. Despite the low communication cost, existing one-shot FL methods are mostly impractical or face inherent limitations, e.g. a public dataset is required, clients' models are homogeneous, and additional data/model information need to be uploaded. To overcome these issues, we propose a novel two-stage Data-freE oNe-Shot federated lEarning (DENSE) framework, which trains the global model by a data generation stage and a model distillation stage. DENSE is a practical one-shot FL method that can be applied in reality due to the following advantages: (1) DENSE requires no additional information compared with other methods (except the model parameters) to be transferred between clients and the server; (2) DENSE does not require any auxiliary dataset for training; (3) DENSE considers model heterogeneity in FL, i.e. different clients can have different model architectures. Experiments on a variety of real-world datasets demonstrate the superiority of our method. For example, DENSE outperforms the best baseline method Fed-ADI by 5.08% on CIFAR10 dataset. Our code will soon be available.

Related Publications

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

COALA: A Practical and Vision-Centric Federated Learning Platform

ICML, 2024
Weiming Zhuang, Jian Xu, Chen Chen, Jingtao Li, Lingjuan Lyu

We present COALA, a vision-centric Federated Learning (FL) platform, and a suite of benchmarks for practical FL scenarios, which we categorize as task, data, and model levels. At the task level, COALA extends support from simple classification to 15 computer vision tasks, in…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.