* External authors




Decision Boundary-aware Data Augmentation for Adversarial Training

Chen Chen

Jingfeng Zhang*

Xilie Xu*

Lingjuan Lyu

Chaochao Chen*

Tianlei Hu*

Gang Chen*

* External authors

IEEE Transactions on Dependable and Secure Computing



Adversarial training (AT) is a typical method to learn adversarially robust deep neural networks via training on the adversarial variants generated by their natural examples. However, as training progresses, the training data becomes less attackable, which may undermine the enhancement of model robustness. A straightforward remedy is to incorporate more training data, but it may incur an unaffordable cost. To mitigate this issue, in this paper, we propose a deCisiOn bounDary-aware data Augmentation framework (CODA): in each epoch, the CODA directly employs the meta information of the previous epoch to guide the augmentation process and generate more data that are close to the decision boundary, i.e., attackable data. Compared with the vanilla mixup, our proposed CODA can provide a higher ratio of attackable data, which is beneficial to enhance model robustness; it meanwhile mitigates the model’s linear behavior between classes, where the linear behavior is favorable to the standard training for generalization but not to the adversarial training for robustness. As a result, our proposed CODA encourages the model to predict invariantly in the cluster of each class. Experiments demonstrate that our proposed CODA can indeed enhance adversarial robustness across various adversarial training methods and multiple datasets.

Related Publications

MocoSFL: enabling cross-client collaborative self-supervised learning

ICLR, 2023
Jingtao Li, Lingjuan Lyu, Daisuke Iso, Chaitali Chakrabarti*, Michael Spranger

Existing collaborative self-supervised learning (SSL) schemes are not suitable for cross-client applications because of their expensive computation and large local data requirements. To address these issues, we propose MocoSFL, a collaborative SSL framework based on Split Fe…

IDEAL: Query-Efficient Data-Free Learning from Black-Box Models

ICLR, 2023
Jie Zhang, Chen Chen, Lingjuan Lyu

Knowledge Distillation (KD) is a typical method for training a lightweight student model with the help of a well-trained teacher model. However, most KD methods require access to either the teacher's training data or model parameter, which is unrealistic. To tackle this prob…

Twofer: Tackling Continual Domain Shift with Simultaneous Domain Generalization and Adaptation

ICLR, 2023
Chenxi Liu*, Lixu Wang, Lingjuan Lyu, Chen Sun*, Xiao Wang*, Qi Zhu*

In real-world applications, deep learning models often run in non-stationary environments where the target data distribution continually shifts over time. There have been numerous domain adaptation (DA) methods in both online and offline modes to improve cross-domain adaptat…

  • HOME
  • Publications
  • Decision Boundary-aware Data Augmentation for Adversarial Training


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.