Authors

* External authors

Venue

Date

Share

Decision Boundary-aware Data Augmentation for Adversarial Training

Chen Chen

Jingfeng Zhang*

Xilie Xu*

Lingjuan Lyu

Chaochao Chen*

Tianlei Hu*

Gang Chen*

* External authors

IEEE Transactions on Dependable and Secure Computing

2022

Abstract

Adversarial training (AT) is a typical method to learn adversarially robust deep neural networks via training on the adversarial variants generated by their natural examples. However, as training progresses, the training data becomes less attackable, which may undermine the enhancement of model robustness. A straightforward remedy is to incorporate more training data, but it may incur an unaffordable cost. To mitigate this issue, in this paper, we propose a deCisiOn bounDary-aware data Augmentation framework (CODA): in each epoch, the CODA directly employs the meta information of the previous epoch to guide the augmentation process and generate more data that are close to the decision boundary, i.e., attackable data. Compared with the vanilla mixup, our proposed CODA can provide a higher ratio of attackable data, which is beneficial to enhance model robustness; it meanwhile mitigates the model’s linear behavior between classes, where the linear behavior is favorable to the standard training for generalization but not to the adversarial training for robustness. As a result, our proposed CODA encourages the model to predict invariantly in the cluster of each class. Experiments demonstrate that our proposed CODA can indeed enhance adversarial robustness across various adversarial training methods and multiple datasets.

Related Publications

Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Model

WWW, 2025
Jie Ren, Kangrui Chen, Chen Chen, Vikash Sehwag, Yue Xing, Jiliang Tang, Lingjuan Lyu

Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …

Exploit Gradient Skewness to Circumvent Byzantine Defenses for Federated Learning

AAAI, 2025
Yuchen Liu*, Chen Chen, Lingjuan Lyu, Yaochu Jin, Gang Chen*

Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

  • HOME
  • Publications
  • Decision Boundary-aware Data Augmentation for Adversarial Training

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.