* External authors




Decision Boundary-aware Data Augmentation for Adversarial Training

Chen Chen

Jingfeng Zhang*

Xilie Xu*

Lingjuan Lyu

Chaochao Chen*

Tianlei Hu*

Gang Chen*

* External authors

IEEE Transactions on Dependable and Secure Computing



Adversarial training (AT) is a typical method to learn adversarially robust deep neural networks via training on the adversarial variants generated by their natural examples. However, as training progresses, the training data becomes less attackable, which may undermine the enhancement of model robustness. A straightforward remedy is to incorporate more training data, but it may incur an unaffordable cost. To mitigate this issue, in this paper, we propose a deCisiOn bounDary-aware data Augmentation framework (CODA): in each epoch, the CODA directly employs the meta information of the previous epoch to guide the augmentation process and generate more data that are close to the decision boundary, i.e., attackable data. Compared with the vanilla mixup, our proposed CODA can provide a higher ratio of attackable data, which is beneficial to enhance model robustness; it meanwhile mitigates the model’s linear behavior between classes, where the linear behavior is favorable to the standard training for generalization but not to the adversarial training for robustness. As a result, our proposed CODA encourages the model to predict invariantly in the cluster of each class. Experiments demonstrate that our proposed CODA can indeed enhance adversarial robustness across various adversarial training methods and multiple datasets.

Related Publications

Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?

NeurIPS, 2023
Xiaoxiao Sun*, Nidham Gazagnadou, Vivek Sharma, Lingjuan Lyu, Hongdong Li*, Liang Zheng*

Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Image…

UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition

NeurIPS, 2023
Yuyuan Li*, Chaochao Chen*, Yizhao Zhang*, Weiming Liu*, Lingjuan Lyu, Xiaolin Zheng*, Dan Meng*, Jun Wang*

With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearn…

Towards Personalized Federated Learning via Heterogeneous Model Reassembly

NeurIPS, 2023
Jiaqi Wang*, Xingyi Yang*, Suhan Cui*, Liwei Che*, Lingjuan Lyu, Dongkuan Xu*, Fenglong Ma*

This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneo…

  • HOME
  • Publications
  • Decision Boundary-aware Data Augmentation for Adversarial Training


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.