Authors

* External authors

Venue

Date

Share

Defending Against Backdoor Attacks in Natural Language Generation

Xiaofei Sun*

Xiaoya Li*

Yuxian Meng*

Xiang Ao*

Lingjuan Lyu

Jiwei Li*

Tianwei Zhang*

* External authors

AAAI 2023

2023

Abstract

The frustratingly fragile nature of neural network models make current natural language generation (NLG) systems prone to backdoor attacks and generate malicious sequences that could be sexist or offensive. Unfortunately, little effort has been invested to how backdoor attacks can affect current NLG models and how to defend against these attacks. In this work, by giving a formal definition of backdoor attack and defense, we investigate this problem on two important NLG tasks, machine translation and dialog generation. Tailored to the inherent nature of NLG models (e.g., producing a sequence of coherent words given contexts), we design defending strategies against attacks.
We find that testing the backward probability of generating sources given targets yields effective defense performance against all different types of attacks, and is able to handle the {\it one-to-many} issue in many NLG tasks such as dialog generation. We hope that this work can raise the awareness of backdoor risks concealed in deep NLG systems and inspire more future work (both attack and defense) towards this direction.

Related Publications

A Simple Background Augmentation Method for Object Detection with Diffusion Model

ECCV, 2024
Yuhang Li, Xin Dong, Chen Chen, Weiming Zhuang, Lingjuan Lyu

In computer vision, it is well-known that a lack of data diversity will impair model performance. In this study, we address the challenges of enhancing the dataset diversity problem in order to benefit various downstream tasks such as object detection and instance segmentati…

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

  • HOME
  • Publications
  • Defending Against Backdoor Attacks in Natural Language Generation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.