Authors

* External authors

Venue

Date

Share

Differential Private Knowledge Transfer for Privacy-Preserving Cross-Domain Recommendation

Chaochao Chen*

Huiwen Wu*

Jiajie Su*

Lingjuan Lyu

Xiaolin Zheng*

Li Wang*

* External authors

WWW-22

2022

Abstract

Cross Domain Recommendation (CDR) has been popularly studied to alleviate the cold-start and data sparsity problem commonly existed in recommender systems. CDR models can improve the recommendation performance of a target domain by leveraging the data of other source domains. However, most existing CDR models assume information can directly ‘transfer across the bridge’, ignoring the privacy issues. To solve the privacy concern in CDR, in this paper, we propose a novel two stage based privacy-preserving CDR framework (PriCDR). In the first stage, we propose two methods, i.e., Johnson-Lindenstrauss Transform (JLT) based and Sparse-awareJLT (SJLT) based, to publish the rating matrix of the source domain using differential privacy. We theoretically analyze the privacy and utility of our proposed differential privacy based rating publishing methods. In the second stage, we propose a novel heterogeneous CDR model (HeteroCDR), which uses deep auto-encoder and deep neural network to model the published source rating matrix and target rating matrix respectively. To this end, PriCDR can not only protect the data privacy of the source domain, but also alleviate the data sparsity of the source domain. We conduct experiments on two benchmark datasets and the results demonstrate the effectiveness of our proposed PriCDR and HeteroCDR.

Related Publications

Self-Comparison for Dataset-Level Membership Inference in Large (Vision-)Language Model

WWW, 2025
Jie Ren, Kangrui Chen, Chen Chen, Vikash Sehwag, Yue Xing, Jiliang Tang, Lingjuan Lyu

Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …

Exploit Gradient Skewness to Circumvent Byzantine Defenses for Federated Learning

AAAI, 2025
Yuchen Liu*, Chen Chen, Lingjuan Lyu, Yaochu Jin, Gang Chen*

Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

  • HOME
  • Publications
  • Differential Private Knowledge Transfer for Privacy-Preserving Cross-Domain Recommendation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.