Authors

* External authors

Venue

Date

Share

DiffuCOMET: Contextual Commonsense Knowledge Diffusion

Silin Gao*

Mete Ismayilzada*

Mengjie Zhao*

Hiromi Wakaki*

Yuki Mitsufuji

Antoine Bosselut*

* External authors

ACL-24

2024

Abstract

Inferring contextually-relevant and diverse commonsense to understand narratives remains challenging for knowledge models. In this work, we develop a series of knowledge models, DiffuCOMET, that leverage diffusion to learn to reconstruct the implicit semantic connections between narrative contexts and relevant commonsense knowledge. Across multiple diffusion steps, our method progressively refines a representation of commonsense facts that is anchored to a narrative, producing contextually-relevant and diverse commonsense inferences for an input context. To evaluate DiffuCOMET, we introduce new metrics for commonsense inference that more closely measure knowledge diversity and contextual relevance. Our results on two different benchmarks, ComFact and WebNLG+, show that knowledge generated by DiffuCOMET achieves a better trade-off between commonsense diversity, contextual relevance and alignment to known gold references, compared to baseline knowledge models.

Related Publications

Theory-Informed Improvements to Classifier-Free Guidance for Discrete Diffusion Models

ICLR, 2026
Kevin Rojas, Ye He, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji, Molei Tao

Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …

3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation

ICLR, 2026
Joungbin Lee, Jaewoo Jung, Jisang Han, Takuya Narihira, Kazumi Fukuda, Junyoung Seo, Sunghwan Hong, Yuki Mitsufuji, Seungryong Kim*

We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…

LLM2Fx-Tools: Tool Calling For Music Post-Production

ICLR, 2026
Seungheon Doh, Junghyun Koo*, Marco A. Martínez-Ramírez, Woosung Choi, Wei-Hsiang Liao, Qiyu Wu, Juhan Nam, Yuki Mitsufuji

This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.