Authors

* External authors

Venue

Date

Share

DiffuCOMET: Contextual Commonsense Knowledge Diffusion

Silin Gao*

Mete Ismayilzada*

Mengjie Zhao*

Hiromi Wakaki*

Yuki Mitsufuji

Antoine Bosselut*

* External authors

ACL-24

2024

Abstract

Inferring contextually-relevant and diverse commonsense to understand narratives remains challenging for knowledge models. In this work, we develop a series of knowledge models, DiffuCOMET, that leverage diffusion to learn to reconstruct the implicit semantic connections between narrative contexts and relevant commonsense knowledge. Across multiple diffusion steps, our method progressively refines a representation of commonsense facts that is anchored to a narrative, producing contextually-relevant and diverse commonsense inferences for an input context. To evaluate DiffuCOMET, we introduce new metrics for commonsense inference that more closely measure knowledge diversity and contextual relevance. Our results on two different benchmarks, ComFact and WebNLG+, show that knowledge generated by DiffuCOMET achieves a better trade-off between commonsense diversity, contextual relevance and alignment to known gold references, compared to baseline knowledge models.

Related Publications

Training Consistency Models with Variational Noise Coupling

ICML, 2025
Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji

Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…

Supervised Contrastive Learning from Weakly-labeled Audio Segments for Musical Version Matching

ICML, 2025
Joan Serrà, R. Oguz Araz, Dmitry Bogdanov, Yuki Mitsufuji

Detecting musical versions (different renditions of the same piece) is a challenging task with important applications. Because of the ground truth nature, existing approaches match musical versions at the track level (e.g., whole song). However, most applications require to …

Distillation of Discrete Diffusion through Dimensional Correlations

ICML, 2025
Satoshi Hayakawa, Yuhta Takida, Masaaki Imaizumi*, Hiromi Wakaki*, Yuki Mitsufuji

Diffusion models have demonstrated exceptional performances in various fields of generative modeling, but suffer from slow sampling speed due to their iterative nature. While this issue is being addressed in continuous domains, discrete diffusion models face unique challenge…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.