Discriminator-Guided Cooperative Diffusion for Joint Audio and Video Generation
Akio Hayakawa
ICLR-25
2025
Abstract
In this study, we aim to construct an audio-video generative model with minimal computational cost by leveraging pre-trained single-modal generative models for audio and video. To achieve this, we propose a novel method that guides single-modal models to cooperatively generate well-aligned samples across modalities. Specifically, given two pre-trained base diffusion models, we train a lightweight joint guidance module to adjust scores separately estimated by the base models to match the score of joint distribution over audio and video. We show that this guidance can be computed through the gradient of the optimal discriminator distinguishing real audio-video pairs from the fake ones independently generated by the base models. On the basis of this analysis, we construct a joint guidance module by training this discriminator. Additionally, we adopt a loss function to make the gradient of the discriminator work as a noise estimator, as in standard diffusion models, stabilizing the gradient of the discriminator. Empirical evaluations on several benchmark datasets demonstrate that our method improves both single-modal fidelity and multi-modal alignment with a relatively small number of parameters.
Related Publications
Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…
Detecting musical versions (different renditions of the same piece) is a challenging task with important applications. Because of the ground truth nature, existing approaches match musical versions at the track level (e.g., whole song). However, most applications require to …
Diffusion models have demonstrated exceptional performances in various fields of generative modeling, but suffer from slow sampling speed due to their iterative nature. While this issue is being addressed in continuous domains, discrete diffusion models face unique challenge…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.