Authors
- Satoshi Hayakawa
- Yuhta Takida
- Masaaki Imaizumi*
- Hiromi Wakaki*
- Yuki Mitsufuji
* External authors
Venue
- ICML-25
Date
- 2025
Distillation of Discrete Diffusion through Dimensional Correlations
Satoshi Hayakawa
Masaaki Imaizumi*
Hiromi Wakaki*
* External authors
ICML-25
2025
Abstract
Diffusion models have demonstrated exceptional performances in various fields of generative modeling, but suffer from slow sampling speed due to their iterative nature. While this issue is being addressed in continuous domains, discrete diffusion models face unique challenges, particularly in capturing dependencies between elements (e.g., pixel relationships in image, sequential dependencies in language) mainly due to the computational cost of processing high-dimensional joint distributions. In this paper, (i) we propose "mixture" models for discrete diffusion that are capable of treating dimensional correlations while remaining scalable, and (ii) we provide a set of loss functions for distilling the iterations of existing models. Two primary theoretical insights underpin our approach: First, conventional models with element-wise independence can well approximate the data distribution, but essentially require {\it many sampling steps}. Second, our loss functions enable the mixture models to distill such many-step conventional models into just a few steps by learning the dimensional correlations. Our experimental results show the effectiveness of the proposed method in distilling pretrained discrete diffusion models across image and language domains.
Related Publications
Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …
We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…
This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



