Authors

* External authors

Venue

Date

Share

Elden: Exploration via Local Dependencies

Zizhao Wang*

Jiaheng Hu*

Roberto Martin-Martin*

Peter Stone

* External authors

NeurIPS 2023

2023

Abstract

Tasks with large state space and sparse reward present a longstanding challenge to reinforcement learning. In these tasks, an agent needs to explore the state space efficiently until it finds reward: the hard exploration problem. To deal with this problem, the community has proposed to augment the reward function with intrinsic reward, a bonus signal that encourages the agent to visit interesting states. In this work, we propose a new way of defining interesting states for environments with factored state spaces and complex chained dependencies, where an agent's actions may change the state of one factor that, in order, may affect the state of another factor. This is natural in human environments such as homes where the agent's actions can change the state of one object/factor (switch on/off a stove), which influences the state of another object/factor (heat a pan above the stove). Our insight is that, in these environments, interesting states for exploration are states where the agent is uncertain whether (as opposed to how) entities such as the agent or objects have some influence on each other. We present ELDEN, Exploration via Local DepENdencies, a novel intrinsic reward that encourages the discovery of new interactions between entities. ELDEN utilizes a novel scheme --- the partial derivative of the learned dynamics to model the local dependencies between entities accurately and computationally efficiently. Then the uncertainty of the predicted dependencies is used as an intrinsic reward to encourage exploration toward new interactions. We evaluate the performance of ELDEN on three different domains with complex dependencies, ranging from 2D grid worlds to 3D robotic tasks. In all domains, ELDEN is able to correctly recover local dependencies and learn successful policies, significantly outperforming previous state-of-the-art exploration methods.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.