Authors

* External authors

Venue

Date

Share

Enhancing Semantic Communication with Deep Generative Models -- An ICASSP Special Session Overview

Eleonora Grassucci*

Yuki Mitsufuji

Ping Zhang*

Danilo Comminiello*

* External authors

ICASSP 2024

2023

Abstract

Semantic communication is poised to play a pivotal role in shaping the landscape of future AI-driven communication systems. Its challenge of extracting semantic information from the original complex content and regenerating semantically consistent data at the receiver, possibly being robust to channel corruptions, can be addressed with deep generative models. This ICASSP special session overview paper discloses the semantic communication challenges from the machine learning perspective and unveils how deep generative models will significantly enhance semantic communication frameworks in dealing with real-world complex data, extracting and exploiting semantic information, and being robust to channel corruptions. Alongside establishing this emerging field, this paper charts novel research pathways for the next generative semantic communication frameworks.

Related Publications

Bellman Diffusion: Generative Modeling as Learning a Linear Operator in the Distribution Space

ICLR, 2025
Yangming Li, Chieh-Hsin Lai, Carola-Bibiane Schönlieb, Yuki Mitsufuji, Stefano Ermon*

Deep Generative Models (DGMs), including Energy-Based Models (EBMs) and Score-based Generative Models (SGMs), have advanced high-fidelity data generation and complex continuous distribution approximation. However, their application in Markov Decision Processes (MDPs), partic…

Training Consistency Models with Variational Noise Coupling

ICLR, 2025
Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji

Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…

Classifier-Free Guidance inside the Attraction Basin May Cause Memorization

CVPR, 2025
Anubhav Jain, Yuya Kobayashi, Takashi Shibuya, Yuhta Takida, Nasir Memon, Julian Togelius, Yuki Mitsufuji

Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to unders…

  • HOME
  • Publications
  • Enhancing Semantic Communication with Deep Generative Models -- An ICASSP Special Session Overview

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.