Authors

* External authors

Venue

Date

Share

Enhancing Semantic Communication with Deep Generative Models -- An ICASSP Special Session Overview

Eleonora Grassucci*

Yuki Mitsufuji

Ping Zhang*

Danilo Comminiello*

* External authors

ICASSP 2024

2023

Abstract

Semantic communication is poised to play a pivotal role in shaping the landscape of future AI-driven communication systems. Its challenge of extracting semantic information from the original complex content and regenerating semantically consistent data at the receiver, possibly being robust to channel corruptions, can be addressed with deep generative models. This ICASSP special session overview paper discloses the semantic communication challenges from the machine learning perspective and unveils how deep generative models will significantly enhance semantic communication frameworks in dealing with real-world complex data, extracting and exploiting semantic information, and being robust to channel corruptions. Alongside establishing this emerging field, this paper charts novel research pathways for the next generative semantic communication frameworks.

Related Publications

Weighted Point Cloud Embedding for Multimodal Contrastive Learning Toward Optimal Similarity Metric

ICLR, 2025
Toshimitsu Uesaka, Taiji Suzuki, Yuhta Takida, Chieh-Hsin Lai, Naoki Murata, Yuki Mitsufuji

In typical multimodal contrastive learning, such as CLIP, encoders produce onepoint in the latent representation space for each input. However, one-point representation has difficulty in capturing the relationship and the similarity structure of a huge amount of instances in…

Human-Feedback Efficient Reinforcement Learning for Online Diffusion Model Finetuning

ICLR, 2025
Shang-Fu Chen, Chieh-Hsin Lai, Dongjun Kim*, Naoki Murata, Takashi Shibuya, Wei-Hsiang Liao, Shao-Hua Sun, Yuki Mitsufuji, Ayano Hiranaka

Controllable generation through Stable Diffusion (SD) fine-tuning aims to improve fidelity, safety, and alignment with human guidance. Existing reinforcement learning from human feedback methods usually rely on predefined heuristic reward functions or pretrained reward model…

Mining your own secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

ICLR, 2025
Saurav Jha, Shiqi Yang*, Masato Ishii, Mengjie Zhao*, Christian Simon, Muhammad Jehanzeb Mirza, Dong Gong, Lina Yao, Shusuke Takahashi*, Yuki Mitsufuji

Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a ti…

  • HOME
  • Publications
  • Enhancing Semantic Communication with Deep Generative Models -- An ICASSP Special Session Overview

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.