Authors

* External authors

Venue

Date

Share

Expected Value of Communication for Planning in Ad Hoc Teamwork

William Macke*

Reuth Mirsky*

Peter Stone

* External authors

AAAI-2021

2021

Abstract

A desirable goal for autonomous agents is to be able to coordinate on the fly with previously unknown teammates. Known as "ad hoc teamwork", enabling such a capability has been receiving increasing attention in the research community. One of the central challenges in ad hoc teamwork is quickly recognizing the current plans of other agents and planning accordingly. In this paper, we focus on the scenario in which teammates can communicate with one another, but only at a cost. Thus, they must carefully balance plan recognition based on observations vs. that based on communication. This paper proposes a new metric for evaluating how similar are two policies that a teammate may be following - the Expected Divergence Point (EDP). We then present a novel planning algorithm for ad hoc teamwork, determining which query to ask and planning accordingly. We demonstrate the effectiveness of this algorithm in a range of increasingly general communication in ad hoc teamwork problems.

Related Publications

Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning

ICML, 2025
Siddhant Agarwal*, Harshit Sikchi, Peter Stone, Amy Zhang*

Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…

Hyperspherical Normalization for Scalable Deep Reinforcement Learning

ICML, 2025
Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, Jaegul Choo

Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…

A Champion-level Vision-based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7

RA-L, 2025
Hojoon Lee, Takuma Seno, Jun Jet Tai, Kaushik Subramanian, Kenta Kawamoto, Peter Stone, Peter R. Wurman

Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …

  • HOME
  • Publications
  • Expected Value of Communication for Planning in Ad Hoc Teamwork

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.