Authors

* External authors

Venue

Date

Share

Extending Audio Masked Autoencoders Toward Audio Restoration

Zhi Zhong*

Hao Shi*

Masato Hirano*

Kazuki Shimada

Kazuya Tateishi*

Takashi Shibuya

Shusuke Takahashi*

Yuki Mitsufuji

* External authors

WASPAA 2023

2023

Abstract

Audio classification and restoration are among major downstream tasks in audio signal processing. However, restoration derives less of a benefit from pretrained models compared to the overwhelming success of pretrained models in classification tasks. Due to such unbalanced benefits, there has been rising interest in how to improve the performance of pretrained models for restoration tasks, e.g., speech enhancement (SE). Previous works have shown that the features extracted by pretrained audio encoders are effective for SE tasks, but these speech-specialized encoder-only models usually require extra decoders to become compatible with SE, and involve complicated pretraining procedures or complex data augmentation. Therefore, in pursuit of a universal audio model, the audio masked autoencoder (MAE) whose backbone is the autoencoder of Vision Transformers (ViT-AE), is extended from audio classification to SE, a representative restoration task with well-established evaluation standards. ViT-AE learns to restore masked audio signal via a mel-to-mel mapping during pretraining, which is similar to restoration tasks like SE. We propose variations of ViT-AE for a better SE performance, where the mel-to-mel variations yield high scores in non-intrusive metrics and the STFT-oriented variation is effective at intrusive metrics such as PESQ. Different variations can be used in accordance with the scenarios. Comprehensive evaluations reveal that MAE pretraining is beneficial to SE tasks and help the ViT-AE to better generalize to out-of-domain distortions. We further found that large-scale noisy data of general audio sources, rather than clean speech, is sufficiently effective for pretraining.

Related Publications

Can Large Language Models Predict Audio Effects Parameters from Natural Language?

WASPAA, 2025
Seungheon Doh, Junghyun Koo*, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Juhan Nam, Yuki Mitsufuji

In music production, manipulating audio effects (Fx) parameters through natural language has the potential to reduce technical barriers for non-experts. We present LLM2Fx, a framework leveraging Large Language Models (LLMs) to predict Fx parameters directly from textual desc…

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

ICML, 2025
Woosung Choi, Junghyun Koo*, Kin Wai Cheuk, Joan Serrà, Marco A. Martínez-Ramírez, Yukara Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, Yuki Mitsufuji

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…

Fx-Encoder++: Extracting Instrument-Wise Audio Effects Representations from Mixtures

ISMIR, 2025
Yen-Tung Yeh, Junghyun Koo*, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Yi-Hsuan Yang, Yuki Mitsufuji

General-purpose audio representations have proven effective across diverse music information retrieval applications, yet their utility in intelligent music production remains limited by insufficient understanding of audio effects (Fx). Although previous approaches have empha…

  • HOME
  • Publications
  • Extending Audio Masked Autoencoders Toward Audio Restoration

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.