Venue
- EMNLP 2022
Date
- 2022
Extracted BERT Model Leaks More Information than You Think!
Xuanli He*
Chen Chen
Qiongkai Xu*
* External authors
EMNLP 2022
2022
Abstract
The collection and availability of big data, combined with advances in pre-trained models (e.g. BERT), have revolutionized the predictive performance of natural language processing tasks. This allows corporations to provide machine learning as a service (MLaaS) by encapsulating fine-tuned BERT-based models as APIs. Due to significant commercial interest, there has been a surge of attempts to steal remote services via model extraction. Although previous works have made progress in defending against model extraction attacks, there has been little discussion on their performance in preventing privacy leakage. This work bridges this gap by launching an attribute inference attack against the extracted BERT model. Our extensive experiments reveal that model extraction can cause severe privacy leakage even when victim models are facilitated with advanced defensive strategies.
Related Publications
The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…
Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…
With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.