Authors

* External authors

Venue

Date

Share

FAMO: Fast Adaptive Multitask Optimization

Bo Liu*

Yihao Feng*

Peter Stone

Qiang Liu*

* External authors

NeurIPS 2023

2023

Abstract

One of the grand enduring goals of AI is to create generalist agents that can learn multiple different tasks from diverse data via multitask learning (MTL). However, gradient descent (GD) on the average loss across all tasks may yield poor multitask performance due to severe under-optimization of certain tasks. Previous approaches that manipulate task gradients for a more balanced loss decrease require storing and computing all task gradients (O(K) space and time where K is the number of tasks), limiting their use in large-scale scenarios. In this work, we introduce Fast Adaptive Multitask Optimization (FAMO), a dynamic weighting method that decreases task losses in a balanced way using O(1) space and time. We conduct an extensive set of experiments covering multi-task supervised and reinforcement learning problems. Our results indicate that FAMO achieves comparable or superior performance to state-of-the-art gradient manipulation techniques while offering significant improvements in space and computational efficiency. Code is available
at https://github.com/Cranial-XIX/FAMO

Related Publications

Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

AAAI, 2024
Zizhao Wang*, Caroline Wang*, Xuesu Xiao*, Yuke Zhu*, Peter Stone

Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is …

Minimum Coverage Sets for Training Robust Ad Hoc Teamwork Agents

AAAI, 2024
Arrasy Rahman*, Jiaxun Cui*, Peter Stone

Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…

Learning Optimal Advantage from Preferences and Mistaking it for Reward

AAAI, 2024
W. Bradley Knox*, Stephane Hatgis-Kessell*, Sigurdur Orn Adalgeirsson*, Serena Booth*, Anca Dragan*, Peter Stone, Scott Niekum*

We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.