* External authors




FAMO: Fast Adaptive Multitask Optimization

Bo Liu*

Yihao Feng*

Peter Stone

Qiang Liu*

* External authors

NeurIPS 2023



One of the grand enduring goals of AI is to create generalist agents that can learn multiple different tasks from diverse data via multitask learning (MTL). However, gradient descent (GD) on the average loss across all tasks may yield poor multitask performance due to severe under-optimization of certain tasks. Previous approaches that manipulate task gradients for a more balanced loss decrease require storing and computing all task gradients (O(K) space and time where K is the number of tasks), limiting their use in large-scale scenarios. In this work, we introduce Fast Adaptive Multitask Optimization (FAMO), a dynamic weighting method that decreases task losses in a balanced way using O(1) space and time. We conduct an extensive set of experiments covering multi-task supervised and reinforcement learning problems. Our results indicate that FAMO achieves comparable or superior performance to state-of-the-art gradient manipulation techniques while offering significant improvements in space and computational efficiency. Code is available

Related Publications

VaryNote: A Method to Automatically Vary the Number of Notes in Symbolic Music

CMMR, 2023
Juan M. Huerta*, Bo Liu*, Peter Stone

Automatically varying the number of notes in symbolic music has various applications in assisting music creators to embellish simple tunes or to reduce complex music to its core idea. In this paper, we formulate the problem of varying the number of notes while preserving the…

LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning

NeurIPS, 2023
Bo Liu*, Yifeng Zhu*, Chongkai Gao*, Yihao Feng*, Qiang Liu*, Yuke Zhu*, Peter Stone

Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and conce…

Elden: Exploration via Local Dependencies

NeurIPS, 2023
Zizhao Wang*, Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone

Tasks with large state space and sparse reward present a longstanding challenge to reinforcement learning. In these tasks, an agent needs to explore the state space efficiently until it finds reward: the hard exploration problem. To deal with this problem, the community has …


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.