Authors

* External authors

Venue

Date

Share

Goal Blending for Responsive Shared Autonomy in a Navigating Vehicle

Yu-Sian Jiang*

Garrett Warnell*

Peter Stone

* External authors

AAAI-2021

2021

Abstract

Human-robot shared autonomy techniques for vehicle navigation hold promise for reducing a human driver's workload, ensuring safety, and improving navigation efficiency. However, because typical techniques achieve these improvements by effectively removing human control at critical moments, these approaches often exhibit poor responsiveness to human commands—especially in cluttered environments. In this paper, we propose a novel goal-blending shared autonomy (GBSA) system, which aims to improve responsiveness in shared autonomy systems by blending human and robot input during the selection of local navigation goals as opposed to low-level motor (servo-level) commands. We validate the proposed approach by performing a human study involving an intelligent wheelchair and compare GBSA to a representative servo-level shared control system that uses a policy-blending approach. The results of both quantitative performance analysis and a subjective survey show that GBSA exhibits significantly better system responsiveness and induces higher user satisfaction than the existing approach.

Related Publications

N-agent Ad Hoc Teamwork

NeurIPS, 2024
Caroline Wang*, Arrasy Rahman*, Ishan Durugkar, Elad Liebman*, Peter Stone

Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…

Discovering Creative Behaviors through DUPLEX: Diverse Universal Features for Policy Exploration

NeurIPS, 2024
Borja G. Leon*, Francesco Riccio, Kaushik Subramanian, Pete Wurman, Peter Stone

The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Pete Wurman, Peter Stone

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

  • HOME
  • Publications
  • Goal Blending for Responsive Shared Autonomy in a Navigating Vehicle

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.