Venue
- AAAI-2021
Date
- 2021
Goal Blending for Responsive Shared Autonomy in a Navigating Vehicle
Yu-Sian Jiang*
Garrett Warnell*
* External authors
AAAI-2021
2021
Abstract
Human-robot shared autonomy techniques for vehicle navigation hold promise for reducing a human driver's workload, ensuring safety, and improving navigation efficiency. However, because typical techniques achieve these improvements by effectively removing human control at critical moments, these approaches often exhibit poor responsiveness to human commands—especially in cluttered environments. In this paper, we propose a novel goal-blending shared autonomy (GBSA) system, which aims to improve responsiveness in shared autonomy systems by blending human and robot input during the selection of local navigation goals as opposed to low-level motor (servo-level) commands. We validate the proposed approach by performing a human study involving an intelligent wheelchair and compare GBSA to a representative servo-level shared control system that uses a policy-blending approach. The results of both quantitative performance analysis and a subjective survey show that GBSA exhibits significantly better system responsiveness and induces higher user satisfaction than the existing approach.
Related Publications
Despite the advancement of machine learning techniques in recent years, state-of-the-art systems lack robustness to “real world” events, where the input distributions and tasks encountered by the deployed systems will not be limited to the original training context, and syst…
This article considers the problem of diagnosing certain common errors in reward design. Its insights are also applicable to the design of cost functions and performance metrics more generally. To diagnose common errors, we develop 8 simple sanity checks for identifying flaw…
Goal-conditioned reinforcement learning (GCRL) has a wide range of potential real-world applications, including manipulation and navigation problems in robotics. Especially in such robotics tasks, sample efficiency is of the utmost importance for GCRL since, by default, the …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.