Authors
- Xu Xinyi*
- Lingjuan Lyu
- Xingjun Ma*
- Chenglin Miao*
- Chuan-Sheng Foo*
- Bryan Kian Hsiang Low*
* External authors
Venue
- NeurIPS-2021
Date
- 2021
Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning
Xu Xinyi*
Xingjun Ma*
Chenglin Miao*
Chuan-Sheng Foo*
Bryan Kian Hsiang Low*
* External authors
NeurIPS-2021
2021
Abstract
Collaborative machine learning provides a promising framework for different agents to pool their resources (e.g., data) for a common learning task. In realistic settings where agents are self-interested and not altruistic, they may be unwilling to share data or model without adequate rewards. Furthermore, as the data/model the agents share may differ in quality, designing rewards which are fair to them is important so they do not feel exploited and discouraged from sharing. In this paper, we investigate this problem in gradient-based collaborative machine learning. We propose a novel cosine gradient Shapley to evaluate the agents’ contributions and design commensurate rewards in the form of better models. Compared to existing baselines, our method is more efficient and does not require a validation dataset. We provide theoretical fairness guarantees and empirically validate the effectiveness of our method.
Related Publications
The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…
Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …
With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.