Authors

* External authors

Venue

Date

Share

Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning

Xu Xinyi*

Lingjuan Lyu

Xingjun Ma*

Chenglin Miao*

Chuan-Sheng Foo*

Bryan Kian Hsiang Low*

* External authors

NeurIPS-2021

2021

Abstract

Collaborative machine learning provides a promising framework for different agents to pool their resources (e.g., data) for a common learning task. In realistic settings where agents are self-interested and not altruistic, they may be unwilling to share data or model without adequate rewards. Furthermore, as the data/model the agents share may differ in quality, designing rewards which are fair to them is important so they do not feel exploited and discouraged from sharing. In this paper, we investigate this problem in gradient-based collaborative machine learning. We propose a novel cosine gradient Shapley to evaluate the agents’ contributions and design commensurate rewards in the form of better models. Compared to existing baselines, our method is more efficient and does not require a validation dataset. We provide theoretical fairness guarantees and empirically validate the effectiveness of our method.

Related Publications

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning

NeurIPS, 2024
Jiaqi Wang*, Lingjuan Lyu, Fenglong Ma*, Qi Li

Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …

CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence

NeurIPS, 2024
Chaochao Chen*, Yizhao Zhang*, Lingjuan Lyu, Yuyuan Li*, Jiaming Zhang, Li Zhang, Biao Gong, Chenggang Yan

With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…

  • HOME
  • Publications
  • Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.