* External authors




Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning

Xu Xinyi*

Lingjuan Lyu

Xingjun Ma*

Chenglin Miao*

Chuan-Sheng Foo*

Bryan Kian Hsiang Low*

* External authors




Collaborative machine learning provides a promising framework for different agents to pool their resources (e.g., data) for a common learning task. In realistic settings where agents are self-interested and not altruistic, they may be unwilling to share data or model without adequate rewards. Furthermore, as the data/model the agents share may differ in quality, designing rewards which are fair to them is important so they do not feel exploited and discouraged from sharing. In this paper, we investigate this problem in gradient-based collaborative machine learning. We propose a novel cosine gradient Shapley to evaluate the agents’ contributions and design commensurate rewards in the form of better models. Compared to existing baselines, our method is more efficient and does not require a validation dataset. We provide theoretical fairness guarantees and empirically validate the effectiveness of our method.

Related Publications

Protecting Intellectual Property of Language Generation APIs with Lexical Watermark

AAAI, 2022
Xuanli He*, Qiongkai Xu*, Lingjuan Lyu, Fangzhao Wu*, Chenguang Wang*

Nowadays, due to the breakthrough in natural language generation (NLG), including machine translation, document summarization, image captioning, etc NLG models have been encapsulated in cloud APIs to serve over half a billion people worldwide and process over one hundred bil…

DADFNet: Dual Attention and Dual Frequency-Guided Dehazing Network for Video-Empowered Intelligent Transportation

AAAI, 2022
Yu Guo*, Wen Liu*, Jiangtian Nie*, Lingjuan Lyu, Zehui Xiong*, Jiawen Kang*, Han Yu*, Dusit Niyato*

Visual surveillance technology is an indispensable functional component of advanced traffic management systems. It has been applied to perform traffic supervision tasks, such as object detection, tracking and recognition. However, adverse weather conditions, e.g., fog, haze …

Exploiting Data Sparsity in Secure Cross-Platform Social Recommendation

NeurIPS, 2021
Jamie Cui*, Chaochao Chen*, Lingjuan Lyu, Carl Yang*, Li Wang*

Social recommendation has shown promising improvements over traditional systems since it leverages social correlation data as an additional input. Most existing works assume that all data are available to the recommendation platform. However, in practice, user-item interacti…

  • HOME
  • Publications
  • Gradient Driven Rewards to Guarantee Fairness in Collaborative Machine Learning


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.