Venue
- ICASSP 2022
Date
- 2022
Heterogeneous Graph Node Classification with Multi-Hops Relation Features
Xiaolong Xu*
Hong Jin*
Weiqiang Wang*
Shuo Jia*
* External authors
ICASSP 2022
2022
Abstract
In recent years, knowledge graph~(KG) has obtained many achievements in both research and industrial fields. However, most KG algorithms consider node embedding with only structure and node features, but not relation features. In this paper, we propose a novel Heterogeneous Attention~(HAT) algorithm and use both node-based and path-based attention mechanisms to learn various types of nodes and edges on the KG. To better capture representations, multi-hop relation features are involved to generate edge embeddings and help the model obtain more semantic information. To capture a more complex representation, we design different encoder parameters for different types of nodes and edges in HAT. Extensive experiments validate that our HAT significantly outperforms the state-of-the-art methods on both the public datasets and a large-scale real-world fintech dataset.
Related Publications
Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Image…
With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearn…
This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneo…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.