Authors

* External authors

Venue

Date

Share

Hierarchical Diffusion Models for Singing Voice Neural Vocoder

Naoya Takahashi

Mayank Kumar Singh*

Yuki Mitsufuji

* External authors

ICASSP 2023

2023

Abstract

Recent progress in deep generative models has improved the quality of neural vocoders in speech domain. However, generating a high-quality singing voice remains challenging due to a wider variety of musical expressions in pitch, loudness, and pronunciations. In this work, we propose a hierarchical diffusion model for singing voice neural vocoders. The proposed method consists of multiple diffusion models operating in different sampling rates; the model at the lowest sampling rate focuses on generating accurate low-frequency components such as pitch, and other models progressively generate the waveform at higher sampling rates on the basis of the data at the lower sampling rate and acoustic features. Experimental results show that the proposed method produces high-quality singing voices for multiple singers, outperforming state-of-the-art neural vocoders with a similar range of computational costs.

Related Publications

Transformed Low-rank Adaptation via Tensor Decomposition and Its Applications to Text-to-image Models

ICCV, 2025
Zerui Tao, Yuhta Takida, Naoki Murata, Qibin Zhao*, Yuki Mitsufuji

Parameter-Efficient Fine-Tuning (PEFT) of text-to-image models has become an increasingly popular technique with many applications. Among the various PEFT methods, Low-Rank Adaptation (LoRA) and its variants have gained significant attention due to their effectiveness, enabl…

A Comprehensive Real-World Assessment of Audio Watermarking Algorithms: Will They Survive Neural Codecs?

Interspeech, 2025
Yigitcan Özer, Woosung Choi, Joan Serrà, Mayank Kumar Singh*, Wei-Hsiang Liao, Yuki Mitsufuji

We introduce the Robust Audio Watermarking Benchmark (RAW-Bench), a benchmark for evaluating deep learning-based audio watermarking methods with standardized and systematic comparisons. To simulate real-world usage, we introduce a comprehensive audio attack pipeline with var…

Training Consistency Models with Variational Noise Coupling

ICML, 2025
Gianluigi Silvestri, Luca Ambrogioni, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji

Consistency Training (CT) has recently emerged as a promising alternative to diffusion models, achieving competitive performance in image generation tasks. However, non-distillation consistency training often suffers from high variance and instability, and analyzing and impr…

  • HOME
  • Publications
  • Hierarchical Diffusion Models for Singing Voice Neural Vocoder

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.