Authors

* External authors

Venue

Date

Share

IDEAL: Query-Efficient Data-Free Learning from Black-Box Models

Jie Zhang*

Chen Chen

Lingjuan Lyu

* External authors

ICLR 2023

2023

Abstract

Knowledge Distillation (KD) is a typical method for training a lightweight student model with the help of a well-trained teacher model. However, most KD methods require access to either the teacher's training data or model parameter, which is unrealistic. To tackle this problem, recent works study KD under data-free and black-box settings. Nevertheless, these works require a large number of queries to the teacher model, which incurs significant monetary and computational costs. To address these problems, we propose a novel method called query-effIcient Data-free lEarning blAck-box modeLs (IDEAL), which aims to query-efficiently learn from black-box model APIs to train a good student without any real data. In detail, IDEAL trains the student model in two stages: data generation and model distillation. Note that IDEAL does not require any query in the data generation stage and queries the teacher only once for each sample in the distillation stage. Extensive experiments on various real-world datasets show the effectiveness of the proposed IDEAL. For instance, IDEAL can improve the performance of the best baseline method DFME by 5.83% on CIFAR10 dataset with only 0.02× the query budget of DFME. Our code will be published upon acceptance.

Related Publications

How to Evaluate and Mitigate IP Infringement in Visual Generative AI?

ICML, 2025
Zhenting Wang, Chen Chen, Vikash Sehwag, Minzhou Pan*, Lingjuan Lyu

The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…

Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models

CVPR, 2025
Jie Ren, Kangrui Chen, Yingqian Cui, Shenglai Zeng, Hui Liu, Yue Xing, Jiliang Tang, Lingjuan Lyu

Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…

CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI

CVPR, 2025
Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, Vikash Sehwag

With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…

  • HOME
  • Publications
  • IDEAL: Query-Efficient Data-Free Learning from Black-Box Models

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.