IDEAL: Query-Efficient Data-Free Learning from Black-Box Models
Jie Zhang*
Chen Chen
* External authors
ICLR 2023
2023
Abstract
Knowledge Distillation (KD) is a typical method for training a lightweight student model with the help of a well-trained teacher model. However, most KD methods require access to either the teacher's training data or model parameter, which is unrealistic. To tackle this problem, recent works study KD under data-free and black-box settings. Nevertheless, these works require a large number of queries to the teacher model, which incurs significant monetary and computational costs. To address these problems, we propose a novel method called query-effIcient Data-free lEarning blAck-box modeLs (IDEAL), which aims to query-efficiently learn from black-box model APIs to train a good student without any real data. In detail, IDEAL trains the student model in two stages: data generation and model distillation. Note that IDEAL does not require any query in the data generation stage and queries the teacher only once for each sample in the distillation stage. Extensive experiments on various real-world datasets show the effectiveness of the proposed IDEAL. For instance, IDEAL can improve the performance of the best baseline method DFME by 5.83% on CIFAR10 dataset with only 0.02× the query budget of DFME. Our code will be published upon acceptance.
Related Publications
Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …
Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…
The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.