Authors
- Junghyun Koo*
- Marco A. Martínez-Ramírez
- Wei-Hsiang Liao
- Giorgio Fabbro*
- Michele Mancusi
- Yuki Mitsufuji
* External authors
Venue
- ISMIR-25
Date
- 2025
ITO-Master: Inference-Time Optimization for Audio Effects Modeling of Music Mastering Processors
Marco A. Martínez-Ramírez
Giorgio Fabbro*
Michele Mancusi
* External authors
ISMIR-25
2025
Abstract
Music mastering style transfer aims to model and apply the mastering characteristics of a reference track to a target track, simulating the professional mastering process. However, existing methods apply fixed processing based on a reference track, limiting users' ability to fine-tune the results to match their artistic intent. In this paper, we introduce the ITO-Master framework, a reference-based mastering style transfer system that integrates Inference-Time Optimization (ITO) to enable finer user control over the mastering process. By optimizing the reference embedding during inference, our approach allows users to refine the output dynamically, making micro-level adjustments to achieve more precise mastering results. We explore both black-box and white-box methods for modeling mastering processors and demonstrate that ITO improves mastering performance across different styles. Through objective evaluation, subjective listening tests, and qualitative analysis using text-based conditioning with CLAP embeddings, we validate that ITO enhances mastering style similarity while offering increased adaptability. Our framework provides an effective and user-controllable solution for mastering style transfer, allowing users to refine their results beyond the initial style transfer.
Related Publications
We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditiona…
Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided methods rely on pretrained diffusion models by involving forward-backward diffusion processes for editing…
We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.



