Authors
- Keya Ghonasgi*
- Reuth Mirsky*
- Nisha Bhargava*
- Adrian M Haith*
- Peter Stone
- Ashish D Deshpande*
* External authors
Venue
- Scientific Reports
Date
- 2023
Kinematic coordinations capture learning during human-exoskeleton interaction
Keya Ghonasgi*
Reuth Mirsky*
Nisha Bhargava*
Adrian M Haith*
Ashish D Deshpande*
* External authors
Scientific Reports
2023
Abstract
Human–exoskeleton interactions have the potential to bring about changes in human behavior for physical rehabilitation or skill augmentation. Despite signifcant advances in the design and control of these robots, their application to human training remains limited. The key obstacles to the design of such training paradigms are the prediction of human–exoskeleton interaction efects and the selection of interaction control to afect human behavior. In this article, we present a method to elucidate behavioral changes in the human–exoskeleton system and identify expert behaviors correlated with a task goal. Specifcally, we observe the joint coordinations of the robot, also referred to as kinematic coordination behaviors, that emerge from human–exoskeleton interaction during learning. We demonstrate the use of kinematic coordination behaviors with two task domains through a set of three human-subject studies. We fnd that participants (1) learn novel tasks within the exoskeleton environment, (2) demonstrate similarity of coordination during successful movements within participants, (3) learn to leverage these coordination behaviors to maximize success within participants, and (4) tend to converge to similar coordinations for a given task strategy across participants. At a high level, we identify task-specifc joint coordinations that are used by diferent experts for a given task goal. These coordinations can be quantifed by observing experts and the similarity to these coordinations can act as a measure of learning over the course of training for novices. The observed expert coordinations may further be used in the design of adaptive robot interactions aimed at teaching a participant the expert behaviors.
Related Publications
Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…
The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…
Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.