Authors

* External authors

Venue

Date

Share

Kinematic coordinations capture learning during human-exoskeleton interaction

Keya Ghonasgi*

Reuth Mirsky*

Nisha Bhargava*

Adrian M Haith*

Peter Stone

Ashish D Deshpande*

* External authors

Scientific Reports

2023

Abstract

Human–exoskeleton interactions have the potential to bring about changes in human behavior for physical rehabilitation or skill augmentation. Despite signifcant advances in the design and control of these robots, their application to human training remains limited. The key obstacles to the design of such training paradigms are the prediction of human–exoskeleton interaction efects and the selection of interaction control to afect human behavior. In this article, we present a method to elucidate behavioral changes in the human–exoskeleton system and identify expert behaviors correlated with a task goal. Specifcally, we observe the joint coordinations of the robot, also referred to as kinematic coordination behaviors, that emerge from human–exoskeleton interaction during learning. We demonstrate the use of kinematic coordination behaviors with two task domains through a set of three human-subject studies. We fnd that participants (1) learn novel tasks within the exoskeleton environment, (2) demonstrate similarity of coordination during successful movements within participants, (3) learn to leverage these coordination behaviors to maximize success within participants, and (4) tend to converge to similar coordinations for a given task strategy across participants. At a high level, we identify task-specifc joint coordinations that are used by diferent experts for a given task goal. These coordinations can be quantifed by observing experts and the similarity to these coordinations can act as a measure of learning over the course of training for novices. The observed expert coordinations may further be used in the design of adaptive robot interactions aimed at teaching a participant the expert behaviors.

Related Publications

Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning

ICML, 2025
Siddhant Agarwal*, Harshit Sikchi, Peter Stone, Amy Zhang*

Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…

Hyperspherical Normalization for Scalable Deep Reinforcement Learning

ICML, 2025
Hojoon Lee, Youngdo Lee, Takuma Seno, Donghu Kim, Peter Stone, Jaegul Choo

Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…

A Champion-level Vision-based Reinforcement Learning Agent for Competitive Racing in Gran Turismo 7

RA-L, 2025
Hojoon Lee, Takuma Seno, Jun Jet Tai, Kaushik Subramanian, Kenta Kawamoto, Peter Stone, Peter R. Wurman

Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …

  • HOME
  • Publications
  • Kinematic coordinations capture learning during human-exoskeleton interaction

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.