* External authors




LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning

Bo Liu*

Yifeng Zhu*

Chongkai Gao*

Yihao Feng*

Qiang Liu*

Yuke Zhu*

Peter Stone

* External authors

NeurIPS 2023



Lifelong learning offers a promising paradigm of building a generalist agent that learns and adapts over its lifespan. Unlike traditional lifelong learning problems in image and text domains, which primarily involve the transfer of declarative knowledge of entities and concepts, lifelong learning in decision-making (LLDM) also necessitates the transfer of procedural knowledge, such as actions and behaviors. To advance research in LLDM, we introduce LIBERO, a novel benchmark of lifelong learning for robot manipulation. Specifically, LIBERO highlights five key research topics in LLDM: 1) how to efficiently transfer declarative knowledge, procedural knowledge, or the mixture of both; 2) how to design effective policy architectures and 3) effective algorithms for LLDM; 4) the robustness of a lifelong learner with respect to task ordering; and 5) the effect of model pretraining for LLDM. We develop an extendible procedural generation pipeline that can in principle generate infinitely many tasks. For benchmarking purpose, we create four task suites (130 tasks in total) that we use to investigate the above-mentioned research topics. To support sample-efficient learning, we provide high-quality human-teleoperated demonstration data for all tasks. Our extensive experiments present several insightful or even unexpected discoveries: sequential finetuning outperforms existing lifelong learning methods in forward transfer, no single visual encoder architecture excels at all types of knowledge transfer, and naive supervised pretraining can hinder agents' performance in the subsequent LLDM. Check the website at this https URL ( for the code and the datasets.

Related Publications

Building Minimal and Reusable Causal State Abstractions for Reinforcement Learning

AAAI, 2024
Zizhao Wang*, Caroline Wang*, Xuesu Xiao*, Yuke Zhu*, Peter Stone

Two desiderata of reinforcement learning (RL) algorithms are the ability to learn from relatively little experience and the ability to learn policies that generalize to a range of problem specifications. In factored state spaces, one approach towards achieving both goals is …

Minimum Coverage Sets for Training Robust Ad Hoc Teamwork Agents

AAAI, 2024
Arrasy Rahman*, Jiaxun Cui*, Peter Stone

Robustly cooperating with unseen agents and human partners presents significant challenges due to the diverse cooperative conventions these partners may adopt. Existing Ad Hoc Teamwork (AHT) methods address this challenge by training an agent with a population of diverse tea…

Learning Optimal Advantage from Preferences and Mistaking it for Reward

AAAI, 2024
W. Bradley Knox*, Stephane Hatgis-Kessell*, Sigurdur Orn Adalgeirsson*, Serena Booth*, Anca Dragan*, Peter Stone, Scott Niekum*

We consider algorithms for learning reward functions from human preferences over pairs of trajectory segments---as used in reinforcement learning from human feedback (RLHF)---including those used to fine tune ChatGPT and other contemporary language models. Most recent work o…

  • HOME
  • Publications
  • LIBERO: Benchmarking Knowledge Transfer for Lifelong Robot Learning


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.