Authors

* External authors

Venue

Date

Share

Link prediction for hypothesis generation: an active curriculum learning infused temporal graph-based approach

Uchenna Akujuobi

Priyadarshini Kumari

Jihun Choi

Samy Badreddine

Kana Maruyama

Sucheendra K Palaniappan*

Tarek R Besold

* External authors

AIR

2024

Abstract

Over the last few years Literature-based Discovery (LBD) has regained popularity as a means to enhance the scientific research process. The resurgent interest has spurred the development of supervised and semi-supervised machine learning models aimed at making previously implicit connections between scientific concepts/entities within often extensive bodies of literature explicit—i.e., suggesting novel scientific hypotheses. In doing so, understanding the temporally evolving interactions between these entities can provide valuable information for predicting the future development of entity relationships. However, existing methods often underutilize the latent information embedded in the temporal aspects of the interaction data. Motivated by applications in the food domain—where we aim to connect nutritional information with health related benefits—we address the hypothesis-generation problem using a temporal graph-based approach. Given that hypothesis generation involves predicting future (i.e., still to be discovered) entity connections, in our view the ability to capture the dynamic evolution of connections over time is pivotal for a robust model. To address this, we introduce THiGER, a novel batch contrastive temporal node-pair embedding method. THiGER excels in providing a more expressive node-pair encoding by effectively harnessing node-pair relationships. Furthermore, we present THiGER-A, an incremental training approach that incorporates an active curriculum learning strategy to mitigate label bias arising from unobserved connections. By progressively training on increasingly challenging and high-utility samples, our approach significantly enhances the performance of the embedding model. Empirical validation of our proposed method demonstrates its effectiveness on established temporal-graph benchmark datasets, as well as on real-world datasets within the food domain.

Related Publications

Revisiting named entity recognition in food computing: enhancing performance and robustness

AIR, 2024
Uchenna Akujuobi, Shuhong Liu*, Tarek R Besold

In the ever-evolving domain of food computing, named entity recognition (NER) presents transformative potential that extends far beyond mere word tagging in recipes. Its implications encompass intelligent recipe recommendations, health analysis, and personalization. Neverthe…

It is Simple Sometimes: A Study On Improving Aspect-Based Sentiment Analysis Performance

ACL, 2024
Laura Cabello*, Uchenna Akujuobi

Aspect-Based Sentiment Analysis (ABSA) involves extracting opinions from textual data about specific entities and their corresponding aspects through various complementary subtasks. Several prior research has focused on developing ad hoc designs of varying complexities for t…

Analysis of Multi-Source Language Training in Cross-Lingual Transfer

ACL, 2024
Seong Hoon Lim*, Taejun Yun*, Jinhyeon Kim*, Jihun Choi, Taeuk Kim

The successful adaptation of multilingual language models (LMs) to a specific language-task pair critically depends on the availability of data tailored for that condition. While cross-lingual transfer (XLT) methods have contributed to addressing this data scarcity problem, …

  • HOME
  • Publications
  • Link prediction for hypothesis generation: an active curriculum learning infused temporal graph-based approach

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.