Authors

Venue

Date

Share

MMAudio: Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis

Ho Kei Cheng

Masato Ishii

Akio Hayakawa

Takashi Shibuya

Alexander Schwing

Yuki Mitsufuji

CVPR-25

2025

Abstract

We propose to synthesize high-quality and synchronized audio, given video and optional text conditions, using a novel multimodal joint training framework MMAudio. In contrast to single-modality training conditioned on (limited) video data only, MMAudio is jointly trained with larger-scale, readily available text-audio data to learn to generate semantically aligned high-quality audio samples. Additionally, we improve audio-visual synchrony with a conditional synchronization module that aligns video conditions with audio latents at the frame level. Trained with a flow matching objective, MMAudio achieves new video-to-audio state-of-the-art among public models in terms of audio quality, semantic alignment, and audio-visual synchronization, while having a low inference time (1.23s to generate an 8s clip) and just 157M parameters. MMAudio also achieves surprisingly competitive performance in text-to-audio generation, showing that joint training does not hinder single-modality performance.

Related Publications

Classifier-Free Guidance inside the Attraction Basin May Cause Memorization

CVPR, 2025
Anubhav Jain, Yuya Kobayashi, Takashi Shibuya, Yuhta Takida, Nasir Memon, Julian Togelius, Yuki Mitsufuji

Diffusion models are prone to exactly reproduce images from the training data. This exact reproduction of the training data is concerning as it can lead to copyright infringement and/or leakage of privacy-sensitive information. In this paper, we present a novel way to unders…

VRVQ: Variable Bitrate Residual Vector Quantization for Audio Compression

ICASSP, 2025
Yunkee Chae, Woosung Choi, Yuhta Takida, Junghyun Koo*, Yukara Ikemiya, Zhi Zhong*, Kin Wai Cheuk, Marco A. Martínez-Ramírez, Kyogu Lee*, Wei-Hsiang Liao, Yuki Mitsufuji

Recent state-of-the-art neural audio compression models have progressively adopted residual vector quantization (RVQ). Despite this success, these models employ a fixed number of codebooks per frame, which can be suboptimal in terms of rate-distortion tradeoff, particularly …

Latent Diffusion Bridges for Unsupervised Musical Audio Timbre Transfer

ICASSP, 2025
Michele Mancusi, Yurii Halychanskyi, Kin Wai Cheuk, Eloi Moliner, Chieh-Hsin Lai, Stefan Uhlich*, Junghyun Koo*, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Giorgio Fabbro*, Yuki Mitsufuji

Music timbre transfer is a challenging task that involves modifying the timbral characteristics of an audio signal while preserving its melodic structure. In this paper, we propose a novel method based on dual diffusion bridges, trained using the CocoChorales Dataset, which …

  • HOME
  • Publications
  • MMAudio: Taming Multimodal Joint Training for High-Quality Video-to-Audio Synthesis

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.