Authors

* External authors

Venue

Date

Share

MMAudioSep: Taming Video-to-Audio Generative Model Towards Video/Text-Queried Sound Separation

Akira Takahashi

Shusuke Takahashi*

Yuki Mitsufuji

* External authors

ICASSP-26

2026

Abstract

We introduce MMAudioSep, a generative model for video/text-queried sound separation that is founded on a pretrained video-to-audio model. By leveraging knowledge about the relationship between video/text and audio learned through a pretrained audio generative model, we can train the model more efficiently, i.e., the model does not need to be trained from scratch. We evaluate the performance of MMAudioSep by comparing it to existing separation models, including models based on both deterministic and generative approaches, and find it is superior to the baseline models. Furthermore, we demonstrate that even after acquiring functionality for sound separation via fine-tuning, the model retains the ability for original video-to-audio generation. This highlights the potential of foundational sound generation models to be adopted for sound-related downstream tasks.

Related Publications

Theory-Informed Improvements to Classifier-Free Guidance for Discrete Diffusion Models

ICLR, 2026
Kevin Rojas, Ye He, Chieh-Hsin Lai, Yuhta Takida, Yuki Mitsufuji, Molei Tao

Classifier-Free Guidance (CFG) is a widely used technique for conditional generation and improving sample quality in continuous diffusion models, and recent works have extended it to discrete diffusion. This paper theoretically analyzes CFG in the context of masked discrete …

3D Scene Prompting for Scene-Consistent Camera-Controllable Video Generation

ICLR, 2026
Joungbin Lee, Jaewoo Jung, Jisang Han, Takuya Narihira, Kazumi Fukuda, Junyoung Seo, Sunghwan Hong, Yuki Mitsufuji, Seungryong Kim*

We present 3DScenePrompt, a framework that generates the next video chunk from arbitrary-length input while enabling precise camera control and preserving scene consistency. Unlike methods conditioned on a single image or a short clip, we employ dual spatio-temporal conditio…

LLM2Fx-Tools: Tool Calling For Music Post-Production

ICLR, 2026
Seungheon Doh, Junghyun Koo*, Marco A. Martínez-Ramírez, Woosung Choi, Wei-Hsiang Liao, Qiyu Wu, Juhan Nam, Yuki Mitsufuji

This paper introduces LLM2Fx-Tools, a multimodal tool-calling framework that generates executable sequences of audio effects (Fx-chain) for music post-production. LLM2Fx-Tools uses a large language model (LLM) to understand audio inputs, select audio effects types, determine…

  • HOME
  • Publications
  • MMAudioSep: Taming Video-to-Audio Generative Model Towards Video/Text-Queried Sound Separation

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.