Authors

* External authors

Venue

Date

Share

Men Also Do Laundry: Multi-Attribute Bias Amplification

Dora Zhao*

Jerone T. A. Andrews

Alice Xiang

* External authors

ICML 2023

2023

Abstract

As computer vision systems become more widely deployed, there is increasing concern from both the research community and the public that these systems are not only reproducing but amplifying harmful social biases. The phenomenon of bias amplification, which is the focus of this work, refers to models amplifying inherent training set biases at test time. Existing metrics measure bias amplification with respect to single annotated attributes (e.g., 𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚛). However, several visual datasets consist of images with multiple attribute annotations. We show models can learn to exploit correlations with respect to multiple attributes (e.g., {𝚌𝚘𝚖𝚙𝚞𝚝𝚎𝚛, 𝚔𝚎𝚢𝚋𝚘𝚊𝚛𝚍}), which are not accounted for by current metrics. In addition, we show current metrics can give the erroneous impression that minimal or no bias amplification has occurred as they involve aggregating over positive and negative values. Further, these metrics lack a clear desired value, making them difficult to interpret. To address these shortcomings, we propose a new metric: Multi-Attribute Bias Amplification. We validate our proposed metric through an analysis of gender bias amplification on the COCO and imSitu datasets. Finally, we benchmark bias mitigation methods using our proposed metric, suggesting possible avenues for future bias mitigation

Related Publications

A Taxonomy of Challenges to Curating Fair Datasets

NeurIPS, 2024
Dora Zhao*, Morgan Klaus Scheuerman, Pooja Chitre*, Jerone Andrews, Georgia Panagiotidou*, Shawn Walker*, Kathleen H. Pine*, Alice Xiang

Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade…

Resampled Datasets Are Not Enough: Mitigating Societal Bias Beyond Single Attributes

EMNLP, 2024
Yusuke Hirota, Jerone Andrews, Dora Zhao*, Orestis Papakyriakopoulos*, Apostolos Modas, Yuta Nakashima*, Alice Xiang

We tackle societal bias in image-text datasets by removing spurious correlations between protected groups and image attributes. Traditional methods only target labeled attributes, ignoring biases from unlabeled ones. Using text-guided inpainting models, our approach ensures …

Efficient Bias Mitigation Without Privileged Information

ECCV, 2024
Mateo Espinosa Zarlenga*, Swami Sankaranarayanan, Jerone Andrews, Zohreh Shams, Mateja Jamnik*, Alice Xiang

Deep neural networks trained via empirical risk minimisation often exhibit significant performance disparities across groups, particularly when group and task labels are spuriously correlated (e.g., “grassy background” and “cows”). Existing bias mitigation methods that aim t…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.