Authors

* External authors

Venue

Date

Share

Mining your own secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

Saurav Jha

Shiqi Yang*

Masato Ishii

Mengjie Zhao*

Christian Simon

Muhammad Jehanzeb Mirza

Dong Gong

Lina Yao

Shusuke Takahashi*

Yuki Mitsufuji

* External authors

ICLR-25

2025

Abstract

Personalized text-to-image diffusion models have grown popular for their ability to efficiently acquire a new concept from user-defined text descriptions and a few images. However, in the real world, a user may wish to personalize a model on multiple concepts but one at a time, with no access to the data from previous concepts due to storage/privacy concerns. When faced with this continual learning (CL) setup, most personalization methods fail to find a balance between acquiring new concepts and retaining previous ones -- a challenge that continual personalization (CP) aims to solve. Inspired by the successful CL methods that rely on class-specific information for regularization, we resort to the inherent class-conditioned density estimates, also known as diffusion classifier (DC) scores, for CP of text-to-image diffusion models. Namely, we propose using DC scores for regularizing the parameter-space and function-space of text-to-image diffusion models. Using several diverse evaluation setups, datasets, and metrics, we show that our proposed regularization-based CP methods outperform the state-of-the-art C-LoRA, and other baselines. Finally, by operating in the replay-free CL setup and on low-rank adapters, our method incurs zero storage and parameter overhead, respectively, over the state-of-the-art.

Related Publications

Music Arena: Live Evaluation for Text-to-Music

NeurIPS, 2025
Yonghyun Kim, Wayne Chi, Anastasios N. Angelopoulos, Wei-Lin Chiang, Koichi Saito, Shinji Watanabe, Yuki Mitsufuji, Chris Donahue

We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare…

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

NeurIPS, 2025
Woosung Choi, Junghyun Koo*, Kin Wai Cheuk, Joan Serrà, Marco A. Martínez-Ramírez, Yukara Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, Yuki Mitsufuji

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…

Blind Inverse Problem Solving Made Easy by Text-to-Image Latent Diffusion

NeurIPS, 2025
Michail Dontas, Yutong He, Naoki Murata, Yuki Mitsufuji, J. Zico Kolter*, Ruslan Salakhutdinov*

Blind inverse problems, where both the target data and forward operator are unknown, are crucial to many computer vision applications. Existing methods often depend on restrictive assumptions such as additional training, operator linearity, or narrow image distributions, thu…

  • HOME
  • Publications
  • Mining your own secrets: Diffusion Classifier Scores for Continual Personalization of Text-to-Image Diffusion Models

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.