Authors
- Jingtao Li
- Lingjuan Lyu
- Daisuke Iso
- Chaitali Chakrabarti*
- Michael Spranger
* External authors
Venue
- ICLR 2023
Date
- 2023
MocoSFL: enabling cross-client collaborative self-supervised learning
Jingtao Li
Chaitali Chakrabarti*
* External authors
ICLR 2023
2023
Abstract
Existing collaborative self-supervised learning (SSL) schemes are not suitable for cross-client applications because of their expensive computation and large local data requirements. To address these issues, we propose MocoSFL, a collaborative SSL framework based on Split Federated Learning (SFL) and Momentum Contrast (MoCo). In MocoSFL, the large backbone model is split into a small client-side model and a large server-side model, and only the small client-side model is processed locally on the client's local devices. MocoSFL has three key components: (i) vector concatenation which enables the use of small batch size and reduces computation and memory requirements by orders of magnitude; (ii) feature sharing that helps achieve high accuracy regardless of the quality and volume of local data; (iii) frequent synchronization that helps achieve better non-IID performance because of smaller local model divergence. For a 1,000-client case with non-IID data (each client only has data from 2 random classes of CIFAR-10), MocoSFL can achieve over 84% accuracy with ResNet-18 model. Next we present TAResSFL module that significantly improves the resistance to privacy threats and communication overhead with small sacrifice in accuracy for a MocoSFL system. On a Raspberry Pi 4B device, the MocoSFL-based scheme requires less than 1MB of memory and less than 40MB of communication, and consumes less than 5W power. Thus, compared to the state-of-the-art FL-based approach, MocoSFL has significant advantages in both accuracy and practicality for cross-client applications.
Related Publications
Large Language Models (LLMs) and Vision-Language Models (VLMs) have made significant advancements in a wide range of natural language processing and vision-language tasks. Access to large web-scale datasets has been a key factor in their success. However, concerns have been …
Federated Learning (FL) is notorious for its vulnerability to Byzantine attacks. Most current Byzantine defenses share a common inductive bias: among all the gradients, the densely distributed ones are more likely to be honest. However, such a bias is a poison to Byzantine r…
We introduce a novel Image Quality Assessment (IQA) dataset comprising 6073 UHD-1 (4K) images, annotated at a fixed width of 3840 pixels. Contrary to existing No-Reference (NR) IQA datasets, ours focuses on highly aesthetic photos of high technical quality, filling a gap in …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.