Authors

* External authors

Venue

Date

Share

Model-Based Meta Automatic Curriculum Learning.

Zifan Xu*

Yulin Zhang*

Shahaf S. Shperberg*

Reuth Mirsky*

Yuqian Jiang*

Bo Liu*

Peter Stone

* External authors

CoLLAs 2023

2023

Abstract

Curriculum learning (CL) has been widely explored to facilitate the learning of hard-exploration tasks in reinforcement learning (RL) by training a sequence of easier tasks, often called a curriculum. While most curricula are built either manually or automatically based on heuristics, e.g. choosing a training task which is barely beyond the current abilities of the learner, the fact that similar tasks might benefit from similar curricula motivates us to explore meta-learning as a technique for curriculum generation or teaching for a distribution of similar tasks. This paper formulates the meta CL problem that requires a meta-teacher to generate the curriculum which will assist the student to train toward any given target task from a task distribution based on the similarity of these tasks to one another. We propose a model-based meta automatic curriculum learning algorithm (MM-ACL) that learns to predict the performance improvement on one task when the student is trained on another, given the current status of the student. This predictor can then be used to generate the curricula for different target tasks. Our empirical results demonstrate that MM-ACL outperforms the state-of-theart CL algorithms in a grid-world domain and a more complex visual-based navigation domain in terms of sample efficiency.

Related Publications

N-agent Ad Hoc Teamwork

NeurIPS, 2024
Caroline Wang*, Arrasy Rahman*, Ishan Durugkar, Elad Liebman*, Peter Stone

Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…

Discovering Creative Behaviors through DUPLEX: Diverse Universal Features for Policy Exploration

NeurIPS, 2024
Borja G. Leon*, Francesco Riccio, Kaushik Subramanian, Pete Wurman, Peter Stone

The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Pete Wurman, Peter Stone

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.