Authors
- Zifan Xu*
- Yulin Zhang*
- Shahaf S. Shperberg*
- Reuth Mirsky*
- Yuqian Jiang*
- Bo Liu*
- Peter Stone
* External authors
Venue
- CoLLAs 2023
Date
- 2023
Model-Based Meta Automatic Curriculum Learning.
Zifan Xu*
Yulin Zhang*
Shahaf S. Shperberg*
Reuth Mirsky*
Yuqian Jiang*
Bo Liu*
* External authors
CoLLAs 2023
2023
Abstract
Curriculum learning (CL) has been widely explored to facilitate the learning of hard-exploration tasks in reinforcement learning (RL) by training a sequence of easier tasks, often called a curriculum. While most curricula are built either manually or automatically based on heuristics, e.g. choosing a training task which is barely beyond the current abilities of the learner, the fact that similar tasks might benefit from similar curricula motivates us to explore meta-learning as a technique for curriculum generation or teaching for a distribution of similar tasks. This paper formulates the meta CL problem that requires a meta-teacher to generate the curriculum which will assist the student to train toward any given target task from a task distribution based on the similarity of these tasks to one another. We propose a model-based meta automatic curriculum learning algorithm (MM-ACL) that learns to predict the performance improvement on one task when the student is trained on another, given the current status of the student. This predictor can then be used to generate the curricula for different target tasks. Our empirical results demonstrate that MM-ACL outperforms the state-of-theart CL algorithms in a grid-world domain and a more complex visual-based navigation domain in terms of sample efficiency.
Related Publications
Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…
This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…
A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.