Authors

* External authors

Venue

Date

Share

Multiagent Epidemiologic Inference through Realtime Contact Tracing

Guni Sharon*

James Ault*

Peter Stone

Varun Kompella

Roberto Capobianco

* External authors

AAMAS-2021

2021

Abstract

This paper addresses an epidemiologic inference problem where, given realtime observation of test results, presence of symptoms,
and physical contacts, the most likely infected individuals need to be inferred. The inference problem is modeled as a hidden Markov
model where infection probabilities are updated at every time step and evolve between time steps. We suggest a unique inference
approach that avoids storing the given observations explicitly. Theoretical justification for the proposed model is provided under specific simplifying assumptions. To complement these theoretical results, a comprehensive experimental study is performed using a custom-built agent-based simulator that models inter-agent contacts. The reported results show the effectiveness of the proposed
inference model when considering more realistic scenarios – where the simplifying assumptions do not hold. When pairing the proposed inference model with a simple testing and quarantine policy, promising trends are obtained where the epidemic progression is significantly slowed down while quarantining a bounded number of individuals.

Related Publications

N-agent Ad Hoc Teamwork

NeurIPS, 2024
Caroline Wang*, Arrasy Rahman*, Ishan Durugkar, Elad Liebman*, Peter Stone

Current approaches to learning cooperative multi-agent behaviors assume relatively restrictive settings. In standard fully cooperative multi-agent reinforcement learning, the learning algorithm controls all agents in the scenario, while in ad hoc teamwork, the learning algor…

Discovering Creative Behaviors through DUPLEX: Diverse Universal Features for Policy Exploration

NeurIPS, 2024
Borja G. Leon*, Francesco Riccio, Kaushik Subramanian, Pete Wurman, Peter Stone

The ability to approach the same problem from different angles is a cornerstone of human intelligence that leads to robust solutions and effective adaptation to problem variations. In contrast, current RL methodologies tend to lead to policies that settle on a single solutio…

A Super-human Vision-based Reinforcement Learning Agent for Autonomous Racing in Gran Turismo

RLC, 2024
Miguel Vasco*, Takuma Seno, Kenta Kawamoto, Kaushik Subramanian, Pete Wurman, Peter Stone

Racing autonomous cars faster than the best human drivers has been a longstanding grand challenge for the fields of Artificial Intelligence and robotics. Recently, an end-to-end deep reinforcement learning agent met this challenge in a high-fidelity racing simulator, Gran Tu…

  • HOME
  • Publications
  • Multiagent Epidemiologic Inference through Realtime Contact Tracing

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.