Venue
- AAMAS-2021
Date
- 2021
Multiagent Epidemiologic Inference through Realtime Contact Tracing
Guni Sharon*
James Ault*
* External authors
AAMAS-2021
2021
Abstract
This paper addresses an epidemiologic inference problem where, given realtime observation of test results, presence of symptoms,
and physical contacts, the most likely infected individuals need to be inferred. The inference problem is modeled as a hidden Markov
model where infection probabilities are updated at every time step and evolve between time steps. We suggest a unique inference
approach that avoids storing the given observations explicitly. Theoretical justification for the proposed model is provided under specific simplifying assumptions. To complement these theoretical results, a comprehensive experimental study is performed using a custom-built agent-based simulator that models inter-agent contacts. The reported results show the effectiveness of the proposed
inference model when considering more realistic scenarios – where the simplifying assumptions do not hold. When pairing the proposed inference model with a simple testing and quarantine policy, promising trends are obtained where the epidemic progression is significantly slowed down while quarantining a bounded number of individuals.
Related Publications
Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…
Scaling up the model size and computation has brought consistent performance improvements in supervised learning. However, this lesson often fails to apply to reinforcement learning (RL) because training the model on non-stationary data easily leads to overfitting and unstab…
Deep reinforcement learning has achieved superhuman racing performance in high-fidelity simulators like Gran Turismo 7 (GT7). It typically utilizes global features that require instrumentation external to a car, such as precise localization of agents and opponents, limiting …
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.