Authors

* External authors

Venue

Date

Share

Multimodal Embodied Attribute Learning by Robots for Object-Centric Action Policies.

Xiaohan Zhang*

Saeid Amiri*

Jivko Sinapov*

Jesse Thomason*

Peter Stone

Shiqi Zhang*

* External authors

Autonomous Robots

2023

Abstract

Robots frequently need to perceive object attributes, such as red, heavy, and empty, using multimodal exploratory behaviors, such as look, lift, and shake. One possible way for robots to do so is to learn a classifier for each perceivable attribute given an exploratory behavior. Once the attribute classifiers are learned, they can be used by robots to select actions and identify attributes of new objects, answering questions, such as “Is this object red and empty?” In this article, we introduce a robot interactive perception problem, called Multimodal Embodied Attribute Learning (meal), and explore solutions to this new problem. Under different assumptions, there are two classes of meal problems. offline- meal problems are defined in this article as learning attribute classifiers from pre-collected data, and sequencing actions towards attribute identification under the challenging trade-off between information gains and exploration action costs. For this purpose, we introduce Mixed Observability Robot Control (morc), an algorithm for offline- meal problems, that dynamically constructs both fully and partially observable components of the state for multimodal attribute identification of objects. We further investigate a more challenging class of meal problems, called online- meal, where the robot assumes no pre-collected data, and works on both attribute classification and attribute identification at the same time. Based on morc, we develop an algorithm called Information-Theoretic Reward Shaping (morc-itrs) that actively addresses the trade-off between exploration and exploitation in online- meal problems. morc and morc-itrs are evaluated in comparison with competitive meal baselines, and results demonstrate the superiority of our methods in learning efficiency and identification accuracy

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • Multimodal Embodied Attribute Learning by Robots for Object-Centric Action Policies.

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.