Authors

Venue

Date

Share

Music Arena: Live Evaluation for Text-to-Music

Yonghyun Kim

Wayne Chi

Anastasios N. Angelopoulos

Wei-Lin Chiang

Koichi Saito

Shinji Watanabe

Yuki Mitsufuji

Chris Donahue

NeurIPS-25

2025

Abstract

We present Music Arena, an open platform for scalable human preference evaluation of text-to-music (TTM) models. Soliciting human preferences via listening studies is the gold standard for evaluation in TTM, but these studies are expensive to conduct and difficult to compare, as study protocols may differ across systems. Moreover, human preferences might help researchers align their TTM systems or improve automatic evaluation metrics, but an open and renewable source of preferences does not currently exist. We aim to fill these gaps by offering *live* evaluation for TTM. In Music Arena, real-world users input text prompts of their choosing and compare outputs from two TTM systems, and their preferences are used to compile a leaderboard. While Music Arena follows recent evaluation trends in other AI domains, we also design it with key features tailored to music: an LLM-based routing system to navigate the heterogeneous type signatures of TTM systems, and the collection of *detailed* preferences including listening data and natural language feedback. We also propose a rolling data release policy with user privacy guarantees, providing a renewable source of preference data and increasing platform transparency. Through its standardized evaluation protocol, transparent data access policies, and music-specific features, Music Arena not only addresses key challenges in the TTM ecosystem but also demonstrates how live evaluation can be thoughtfully adapted to unique characteristics of specific AI domains.
Music Arena is available at: this https URL

Related Publications

Vid-CamEdit: Video Camera Trajectory Editing with Generative Rendering from Estimated Geometry

AAAI, 2025
Junyoung Seo, Jisang Han, Jaewoo Jung, Siyoon Jin, Joungbin Lee, Takuya Narihira, Kazumi Fukuda, Takashi Shibuya, Donghoon Ahn, Shoukang Hu, Seungryong Kim*, Yuki Mitsufuji

We introduce Vid-CamEdit, a novel framework for video camera trajectory editing, enabling the re-synthesis of monocular videos along user-defined camera paths. This task is challenging due to its ill-posed nature and the limited multi-view video data for training. Traditiona…

SteerMusic: Enhanced Musical Consistency for Zero-shot Text-Guided and Personalized Music Editing

AAAI, 2025
Xinlei Niu, Kin Wai Cheuk, Jing Zhang, Naoki Murata, Chieh-Hsin Lai, Michele Mancusi, Woosung Choi, Giorgio Fabbro*, Wei-Hsiang Liao, Charles Patrick Martin, Yuki Mitsufuji

Music editing is an important step in music production, which has broad applications, including game development and film production. Most existing zero-shot text-guided methods rely on pretrained diffusion models by involving forward-backward diffusion processes for editing…

Large-Scale Training Data Attribution for Music Generative Models via Unlearning

NeurIPS, 2025
Woosung Choi, Junghyun Koo*, Kin Wai Cheuk, Joan Serrà, Marco A. Martínez-Ramírez, Yukara Ikemiya, Naoki Murata, Yuhta Takida, Wei-Hsiang Liao, Yuki Mitsufuji

This paper explores the use of unlearning methods for training data attribution (TDA) in music generative models trained on large-scale datasets. TDA aims to identify which specific training data points contributed to the generation of a particular output from a specific mod…

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.