Venue
- FAcct-2024
Date
- 2024
Not My Voice! A Taxonomy of Ethical and Safety Harms of Speech Generators
Orestis Papakyriakopoulos*
* External authors
FAcct-2024
2024
Abstract
The rapid and wide-scale adoption of AI to generate human speech poses a range of significant ethical and safety risks to society that need to be addressed. For example, a growing number of speech generation incidents are associated with swatting attacks in the United States, where anonymous perpetrators create synthetic voices that call police officers to close down schools and hospitals, or to violently gain access to innocent citizens' homes. Incidents like this demonstrate that multimodal generative AI risks and harms do not exist in isolation, but arise from the interactions of multiple stakeholders and technical AI systems. In this paper we analyse speech generation incidents to study how patterns of specific harms arise. We find that specific harms can be categorised according to the exposure of affected individuals, that is to say whether they are a subject of, interact with, suffer due to, or are excluded from speech generation systems. Similarly, specific harms are also a consequence of the motives of the creators and deployers of the systems. Based on these insights we propose a conceptual framework for modelling pathways to ethical and safety harms of AI, which we use to develop a taxonomy of harms of speech generators. Our relational approach captures the complexity of risks and harms in sociotechnical AI systems, and yields a taxonomy that can support appropriate policy interventions and decision making for the responsible development and release of speech generation models.
Related Publications
Despite extensive efforts to create fairer machine learning (ML) datasets, there remains a limited understanding of the practical aspects of dataset curation. Drawing from interviews with 30 ML dataset curators, we present a comprehensive taxonomy of the challenges and trade…
We tackle societal bias in image-text datasets by removing spurious correlations between protected groups and image attributes. Traditional methods only target labeled attributes, ignoring biases from unlabeled ones. Using text-guided inpainting models, our approach ensures …
Deep neural networks trained via empirical risk minimisation often exhibit significant performance disparities across groups, particularly when group and task labels are spuriously correlated (e.g., “grassy background” and “cows”). Existing bias mitigation methods that aim t…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.