Authors

* External authors

Venue

Date

Share

Now, Later, and Lasting: 10 Priorities for AI Research, Policy, and Practice.

Eric Horvitz*

Vincent Conitzer*

Sheila McIlraith*

Peter Stone

* External authors

COACM-24

2024

Abstract

Advances in artificial intelligence (AI) will transform many aspects of our lives and society, bringing immense opportunities but also posing significant risks and challenges. The next several decades may well be a turning point for humanity, comparable to the industrial revolution. We write to share a set of recommendations for moving forward from the perspective of the founder and leaders of the One Hundred Year Study on AI. Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts to evaluate the immediate, longer-term, and far-reaching effects of AI on people and society, and to make recommendations about AI research, policy, and practice. As we witness new capabilities emerging from neural models, it is crucial that we engage in efforts to advance our scientific understanding of these models and their behaviors. We must address the impact of AI on people and society through technical, social, and sociotechnical lenses, incorporating insights from a diverse range of experts including voices from engineering, social, behavioral, and economic disciplines. By fostering dialogue, collaboration, and action among various stakeholders, we can strategically guide the development and deployment of AI in ways that maximize its potential for contributing to human flourishing. Despite the growing divide in the field between focusing on short-term versus long-term implications, we think both are of critical importance. As Alan Turing, one of the pioneers of AI, wrote in 1950, "We can only see a short distance ahead, but we can see plenty there that needs to be done." We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.

Related Publications

ProtoCRL: Prototype-based Network for Continual Reinforcement Learning

RLC, 2025
Michela Proietti*, Peter R. Wurman, Peter Stone, Roberto Capobianco

The purpose of continual reinforcement learning is to train an agent on a sequence of tasks such that it learns the ones that appear later in the sequence while retaining theability to perform the tasks that appeared earlier. Experience replay is a popular method used to mak…

Automated Reward Design for Gran Turismo

NeurIPS, 2025
Michel Ma, Takuma Seno, Kaushik Subramanian, Peter R. Wurman, Peter Stone, Craig Sherstan

When designing reinforcement learning (RL) agents, a designer communicates the desired agent behavior through the definition of reward functions - numerical feedback given to the agent as reward or punishment for its actions. However, mapping desired behaviors to reward func…

Proto Successor Measure: Representing the Space of All Possible Solutions of Reinforcement Learning

ICML, 2025
Siddhant Agarwal*, Harshit Sikchi, Peter Stone, Amy Zhang*

Having explored an environment, intelligent agents should be able to transfer their knowledge to most downstream tasks within that environment. Referred to as ``zero-shot learning," this ability remains elusive for general-purpose reinforcement learning algorithms. While rec…

  • HOME
  • Publications
  • Now, Later, and Lasting: 10 Priorities for AI Research, Policy, and Practice.

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.