Authors

* External authors

Venue

Date

Share

Now, Later, and Lasting: 10 Priorities for AI Research, Policy, and Practice.

Eric Horvitz*

Vincent Conitzer*

Sheila McIlraith*

Peter Stone

* External authors

COACM-24

2024

Abstract

Advances in artificial intelligence (AI) will transform many aspects of our lives and society, bringing immense opportunities but also posing significant risks and challenges. The next several decades may well be a turning point for humanity, comparable to the industrial revolution. We write to share a set of recommendations for moving forward from the perspective of the founder and leaders of the One Hundred Year Study on AI. Launched a decade ago, the project is committed to a perpetual series of studies by multidisciplinary experts to evaluate the immediate, longer-term, and far-reaching effects of AI on people and society, and to make recommendations about AI research, policy, and practice. As we witness new capabilities emerging from neural models, it is crucial that we engage in efforts to advance our scientific understanding of these models and their behaviors. We must address the impact of AI on people and society through technical, social, and sociotechnical lenses, incorporating insights from a diverse range of experts including voices from engineering, social, behavioral, and economic disciplines. By fostering dialogue, collaboration, and action among various stakeholders, we can strategically guide the development and deployment of AI in ways that maximize its potential for contributing to human flourishing. Despite the growing divide in the field between focusing on short-term versus long-term implications, we think both are of critical importance. As Alan Turing, one of the pioneers of AI, wrote in 1950, "We can only see a short distance ahead, but we can see plenty there that needs to be done." We offer ten recommendations for action that collectively address both the short- and long-term potential impacts of AI technologies.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • Now, Later, and Lasting: 10 Priorities for AI Research, Policy, and Practice.

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.