Authors

* External authors

Venue

Date

Share

Outsourcing Training without Uploading Data via Efficient Collaborative Open-Source Sampling

Junyuan Hong

Lingjuan Lyu

Jiayu Zhou*

Michael Spranger

* External authors

NeurIPS 2022

2022

Abstract

As deep learning blooms with growing demand for computation and data resources, outsourcing model training to a powerful cloud server becomes an attractive alternative to training at a low-power and cost-effective end device. Traditional outsourcing requires uploading device data to the cloud server, which can be infeasible in many real-world applications due to the often sensitive nature of the collected data and the limited communication bandwidth. To tackle these challenges, we propose to leverage widely available open-source data, which is a massive dataset collected from public and heterogeneous sources (e.g., Internet images). We develop a novel strategy called Efficient Collaborative Open-source Sampling (ECOS) to construct a proximal proxy dataset from open-source data for cloud training, in lieu of client data. ECOS probes open-source data on the cloud server to sense the distribution of client data via a communication- and computation-efficient sampling process, which only communicates a few compressed public features and client scalar responses. Extensive empirical studies show that the proposed ECOS improves the quality of automated client labeling, model compression, and label outsourcing when applied in various learning scenarios. Source codes will be released.

Related Publications

Finding a needle in a haystack: A Black-Box Approach to Invisible Watermark Detection

ECCV, 2024
Minzhou Pan*, Zhenting Wang, Xin Dong, Vikash Sehwag, Lingjuan Lyu, Xue Lin*

In this paper, we propose WaterMark Detection (WMD), the first invisible watermark detection method under a black-box and annotation-free setting. WMD is capable of detecting arbitrary watermarks within a given reference dataset using a clean non watermarked dataset as a ref…

PerceptAnon: Exploring the Human Perception of Image Anonymization Beyond Pseudonymization for GDPR

ICML, 2024
Kartik Patwari, Chen-Nee Chuah*, Lingjuan Lyu, Vivek Sharma

Current image anonymization techniques, largely focus on localized pseudonymization, typically modify identifiable features like faces or full bodies and evaluate anonymity through metrics such as detection and re-identification rates. However, this approach often overlooks …

COALA: A Practical and Vision-Centric Federated Learning Platform

ICML, 2024
Weiming Zhuang, Jian Xu, Chen Chen, Jingtao Li, Lingjuan Lyu

We present COALA, a vision-centric Federated Learning (FL) platform, and a suite of benchmarks for practical FL scenarios, which we categorize as task, data, and model levels. At the task level, COALA extends support from simple classification to 15 computer vision tasks, in…

  • HOME
  • Publications
  • Outsourcing Training without Uploading Data via Efficient Collaborative Open-Source Sampling

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.