Authors

* External authors

Venue

Date

Share

Practical Attribute Reconstruction Attack Against Federated Learning

Chen Chen

Lingjuan Lyu

Han Yu*

Gang Chen*

* External authors

IEEE Transactions on Big Data

2022

Abstract

Existing federated learning (FL) designs have been shown to exhibit vulnerabilities which can be exploited by adversaries to compromise data privacy. However, most current works conduct attacks by leveraging gradients calculated on a small batch of data. This setting is not realistic as gradients are normally shared after at least 1 epoch of local training on each participant's local data in FL for communication efficiency. In this work, we conduct a unique systematic evaluation of attribute reconstruction attack (ARA) launched by the malicious server in the FL system, and empirically demonstrate that the shared local model gradients after 1 epoch of local training can still reveal sensitive attributes of local training data. To demonstrate this leakage, we develop a more effective and efficient gradient matching based method called cos-matching to reconstruct the sensitive attributes of any victim participant's training data. Based on the reconstructed training data attributes, we further show that an attacker can even reconstruct the sensitive attributes of any records that are not included in any participant's training data, thus opening a new attack surface in FL. Extensive experiments show that the proposed method achieves better attribute attack performance than existing state-of-the-art methods.

Related Publications

How to Evaluate and Mitigate IP Infringement in Visual Generative AI?

ICML, 2025
Zhenting Wang, Chen Chen, Vikash Sehwag, Minzhou Pan*, Lingjuan Lyu

The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…

Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models

CVPR, 2025
Jie Ren, Kangrui Chen, Yingqian Cui, Shenglai Zeng, Hui Liu, Yue Xing, Jiliang Tang, Lingjuan Lyu

Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…

CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI

CVPR, 2025
Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, Vikash Sehwag

With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…

  • HOME
  • Publications
  • Practical Attribute Reconstruction Attack Against Federated Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.