Authors

* External authors

Venue

Date

Share

Practical Attribute Reconstruction Attack Against Federated Learning

Chen Chen

Lingjuan Lyu

Han Yu*

Gang Chen*

* External authors

IEEE Transactions on Big Data

2022

Abstract

Existing federated learning (FL) designs have been shown to exhibit vulnerabilities which can be exploited by adversaries to compromise data privacy. However, most current works conduct attacks by leveraging gradients calculated on a small batch of data. This setting is not realistic as gradients are normally shared after at least 1 epoch of local training on each participant's local data in FL for communication efficiency. In this work, we conduct a unique systematic evaluation of attribute reconstruction attack (ARA) launched by the malicious server in the FL system, and empirically demonstrate that the shared local model gradients after 1 epoch of local training can still reveal sensitive attributes of local training data. To demonstrate this leakage, we develop a more effective and efficient gradient matching based method called cos-matching to reconstruct the sensitive attributes of any victim participant's training data. Based on the reconstructed training data attributes, we further show that an attacker can even reconstruct the sensitive attributes of any records that are not included in any participant's training data, thus opening a new attack surface in FL. Extensive experiments show that the proposed method achieves better attribute attack performance than existing state-of-the-art methods.

Related Publications

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning

NeurIPS, 2024
Jiaqi Wang*, Lingjuan Lyu, Fenglong Ma*, Qi Li

Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …

CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence

NeurIPS, 2024
Chaochao Chen*, Yizhao Zhang*, Lingjuan Lyu, Yuyuan Li*, Jiaming Zhang, Li Zhang, Biao Gong, Chenggang Yan

With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…

  • HOME
  • Publications
  • Practical Attribute Reconstruction Attack Against Federated Learning

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.