Authors

* External authors

Venue

Date

Share

Privacy and Robustness in Federated Learning: Attacks and Defenses

Lingjuan Lyu

Han Yu*

Xingjun Ma*

Chen Chen

Lichao Sun*

Jun Zhao*

Qiang Yang*

Philip S. Yu*

* External authors

TNNLS 2022

2022

Abstract

As data are increasingly being stored in different silos and societies becoming more aware of data privacy issues, the traditional centralized training of artificial intelligence (AI) models are facing efficiency and privacy challenges. Recently, federated learning (FL) has emerged as an alternative solution and continue to thrive in this new reality. Existing FL protocol designs have been shown to be vulnerable to adversaries within or outside of the system, compromising data privacy and system robustness. Besides training powerful global models, it is of paramount importance to design FL systems that have privacy guarantees and are resistant to different types of adversaries. In this paper, we conduct a comprehensive survey on privacy and robustness in federated learning over the past 5 years. Through a concise introduction to the concept of FL, and a unique taxonomy covering: 1) threat models; 2) privacy attacks and defenses; 3) poisoning attacks and defenses, we provide an accessible review of this important topic. We highlight the intuitions, key techniques as well as fundamental assumptions adopted by various attacks and defenses. Finally, we discuss promising future research directions towards robust and privacy- preserving FL, and their interplays with multidisciplinary goals of FL.

Related Publications

FLoRA: Federated Fine-Tuning Large Language Models with Heterogeneous Low- Rank Adaptations

NeurIPS, 2024
Lingjuan Lyu, Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Ang Li

The rapid development of Large Language Models (LLMs) has been pivotal in advancing AI, with pre-trained LLMs being adaptable to diverse downstream tasks through fine-tuning. Federated learning (FL) further enhances fine-tuning in a privacy-aware manner by utilizing clients'…

pFedClub: Controllable Heterogeneous Model Aggregation for Personalized Federated Learning

NeurIPS, 2024
Jiaqi Wang*, Lingjuan Lyu, Fenglong Ma*, Qi Li

Federated learning, a pioneering paradigm, enables collaborative model training without exposing users’ data to central servers. Most existing federated learning systems necessitate uniform model structures across all clients, restricting their practicality. Several methods …

CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence

NeurIPS, 2024
Chaochao Chen*, Yizhao Zhang*, Lingjuan Lyu, Yuyuan Li*, Jiaming Zhang, Li Zhang, Biao Gong, Chenggang Yan

With increasing privacy concerns in artificial intelligence, regulations have mandated the right to be forgotten, granting individuals the right to withdraw their data from models. Machine unlearning has emerged as a potential solution to enable selective forgetting in model…

  • HOME
  • Publications
  • Privacy and Robustness in Federated Learning: Attacks and Defenses

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.