Authors

* External authors

Venue

Date

Share

PrivateRec: Differentially Private Model Training and Online Serving for Federated News Recommendation.

Ruixuan Liu*

Yanlin Wang*

Yang Cao*

Lingjuan Lyu

Weike Pan*

Yun Chen*

Hong Chen*

* External authors

KDD'23

2023

Abstract

Collecting and training over sensitive personal data raise severe privacy concerns in personalized recommendation systems, and federated learning can potentially alleviate the problem by training models over decentralized user data.However, a theoretically private solution in both the training and serving stages of federated recommendation is essential but still lacking. Furthermore, naively applying differential privacy (DP) to the two stages in federated recommendation would fail to achieve a satisfactory trade-off between privacy and utility due to the high-dimensional characteristics of model gradients, in this work, we propose a federated news recommendation method for achieving a better utility in model training and online serving under a DP guarantee.We first clarify the DP definition over behavior data for each round in the life-circle of federated recommendation systems.Next, we propose a privacy-preserving online serving mechanism under this definition based on the idea of decomposing user embeddings with public basic vectors and perturbing the lower-dimensional combination coefficients. We apply a random behavior padding mechanism to reduce the required noise intensity for better utility. Besides, we design a federated recommendation model training method, which can generate effective and public basic vectors for serving while providing DP for training participants. We avoid the dimension-dependent noise for large models via label permutation and differentially private attention modules. Experiments on real-world news recommendation datasets validate that our method achieves superior utility under a DP guarantee in both training and serving of federated news recommendations.

Related Publications

Privacy Assessment on Reconstructed Images: Are Existing Evaluation Metrics Faithful to Human Perception?

NeurIPS, 2023
Xiaoxiao Sun*, Nidham Gazagnadou, Vivek Sharma, Lingjuan Lyu, Hongdong Li*, Liang Zheng*

Hand-crafted image quality metrics, such as PSNR and SSIM, are commonly used to evaluate model privacy risk under reconstruction attacks. Under these metrics, reconstructed images that are determined to resemble the original one generally indicate more privacy leakage. Image…

UltraRE: Enhancing RecEraser for Recommendation Unlearning via Error Decomposition

NeurIPS, 2023
Yuyuan Li*, Chaochao Chen*, Yizhao Zhang*, Weiming Liu*, Lingjuan Lyu, Xiaolin Zheng*, Dan Meng*, Jun Wang*

With growing concerns regarding privacy in machine learning models, regulations have committed to granting individuals the right to be forgotten while mandating companies to develop non-discriminatory machine learning systems, thereby fueling the study of the machine unlearn…

Towards Personalized Federated Learning via Heterogeneous Model Reassembly

NeurIPS, 2023
Jiaqi Wang*, Xingyi Yang*, Suhan Cui*, Liwei Che*, Lingjuan Lyu, Dongkuan Xu*, Fenglong Ma*

This paper focuses on addressing the practical yet challenging problem of model heterogeneity in federated learning, where clients possess models with different network structures. To track this problem, we propose a novel framework called pFedHR, which leverages heterogeneo…

  • HOME
  • Publications
  • PrivateRec: Differentially Private Model Training and Online Serving for Federated News Recommendation.

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.