Authors

* External authors

Venue

Date

Share

Prompt Certified Machine Unlearning with Randomized Gradient Smoothing and Quantization

Zijie Zhang*

Xin Zhao*

Tianshi Che*

Yang Zhou*

Lingjuan Lyu

* External authors

NeurIPS 2022

2022

Abstract

The right to be forgotten calls for efficient machine unlearning techniques that make trained machine learning models forget a cohort of data. The combination of training and unlearning operations in traditional machine unlearning methods often leads to the expensive computational cost on large-scale data. This paper presents a prompt certified machine unlearning algorithm, PCMU, which executes one-time operation of simultaneous training and unlearning in advance for a series of machine unlearning requests, without the knowledge of the removed/forgotten data. First, we establish a connection between randomized smoothing for certified robustness on classification and randomized smoothing for certified machine unlearning on gradient quantization. Second, we propose a prompt certified machine unlearning model based on randomized data smoothing and gradient quantization. We theoretically derive the certified radius R regarding the data change before and after data removals and the certified budget of data removals about R. Last but not least, we present another practical framework of randomized gradient smoothing and quantization, due to the dilemma of producing high confidence certificates in the first framework. We theoretically demonstrate the certified radius R' regarding the gradient change, the correlation between two types of certified radii, and the certified budget of data removals about R'.

Related Publications

How to Evaluate and Mitigate IP Infringement in Visual Generative AI?

ICML, 2025
Zhenting Wang, Chen Chen, Vikash Sehwag, Minzhou Pan*, Lingjuan Lyu

The popularity of visual generative AI models like DALL-E 3, Stable Diffusion XL, Stable Video Diffusion, and Sora has been increasing. Through extensive evaluation, we discovered that the state-of-the-art visual generative models can generate content that bears a striking r…

Six-CD: Benchmarking Concept Removals for Benign Text-to-image Diffusion Models

CVPR, 2025
Jie Ren, Kangrui Chen, Yingqian Cui, Shenglai Zeng, Hui Liu, Yue Xing, Jiliang Tang, Lingjuan Lyu

Text-to-image (T2I) diffusion models have shown exceptional capabilities in generating images that closely correspond to textual prompts. However, the advancement of T2I diffusion models presents significant risks, as the models could be exploited for malicious purposes, suc…

CO-SPY: Combining Semantic and Pixel Features to Detect Synthetic Images by AI

CVPR, 2025
Siyuan Cheng, Lingjuan Lyu, Zhenting Wang, Xiangyu Zhang, Vikash Sehwag

With the rapid advancement of generative AI, it is now pos-sible to synthesize high-quality images in a few seconds.Despite the power of these technologies, they raise signif-icant concerns regarding misuse. Current efforts to dis-tinguish between real and AI-generated image…

  • HOME
  • Publications
  • Prompt Certified Machine Unlearning with Randomized Gradient Smoothing and Quantization

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.