* External authors




Protecting Intellectual Property of Language Generation APIs with Lexical Watermark

Xuanli He*

Qiongkai Xu*

Lingjuan Lyu

Fangzhao Wu*

Chenguang Wang*

* External authors




Nowadays, due to the breakthrough in natural language generation (NLG), including machine translation, document summarization, image captioning, etc NLG models have been encapsulated in cloud APIs to serve over half a billion people worldwide and process over one hundred billion word generations per day. Thus, NLG APIs have already become essential profitable services in many commercial companies. Due to the substantial financial and intellectual investments, service providers adopt a pay-as-you-use policy to promote sustainable market growth. However, recent works have shown that cloud platforms suffer from financial losses imposed by model extraction attacks, which aim to imitate the functionality and utility of the victim services, thus violating the intellectual property (IP) of cloud APIs. This work targets at protecting IP of NLG APIs by identifying the attackers who have utilized watermarked responses from the victim NLG APIs. However, most existing watermarking techniques are not directly amenable for IP protection of NLG APIs. To bridge this gap, we first present a novel watermarking method for text generation APIs by conducting lexical modification to the original outputs. Compared with the competitive baselines, our watermark approach achieves better identifiable performance in terms of p-value, with fewer semantic losses. In addition, our watermarks are more understandable and intuitive to humans than the baselines. Finally, the empirical studies show our approach is also applicable to queries from different domains, and is effective on the attacker trained on a mixture of the corpus which includes less than 10% watermarked samples.

Related Publications

How to Inject Backdoors with Better Consistency: Logit Anchoring on Clean Data

ICLR, 2022
Zhiyuan Zhang*, Lingjuan Lyu, Weiqiang Wang*, Lichao Sun*, Xu Sun*

Since training a large-scale backdoored model from scratch requires a large training dataset, several recent attacks have considered to inject backdoors into a trained clean model without altering model behaviors on the clean data. Previous work finds that backdoors can be i…

Decision Boundary-aware Data Augmentation for Adversarial Training

TDSC, 2022
Chen Chen, Jingfeng Zhang*, Xilie Xu*, Lingjuan Lyu, Chaochao Chen*, Tianlei Hu*, Gang Chen*

Adversarial training (AT) is a typical method to learn adversarially robust deep neural networks via training on the adversarial variants generated by their natural examples. However, as training progresses, the training data becomes less attackable, which may undermine the …

Communication-Efficient Federated Learning via Knowledge Distillation

Nature Communications, 2022
Yongfeng Huang*, Chuhan Wu*, Fangzhao Wu*, Lingjuan Lyu, Xing Xie*

Federated learning is a privacy-preserving machine learning technique to train intelligent models from decentralized data, which enables exploiting private data by communicating local model updates in each iteration of model learning rather than the raw data. However, model …

  • HOME
  • Publications
  • Protecting Intellectual Property of Language Generation APIs with Lexical Watermark


Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.