Authors

* External authors

Venue

Date

Share

Quantifying Changes in Kinematic Behavior of a Human-Exoskeleton Interactive System

Keya Ghonasgi*

Reuth Mirsky*

Adrian M Haith*

Peter Stone

Ashish D Deshpande*

* External authors

IROS

2022

Abstract

While human-robot interaction studies are becoming more common, quantification of the effects of repeated interaction with an exoskeleton remains unexplored. We draw upon existing literature in human skill assessment and present extrinsic and intrinsic performance metrics that quantify how the human-exoskeleton system’s behavior changes over time. Specifically, in this paper, we present a new performance metric that provides insight into the system’s kinematics associated with ‘successful’ movements resulting in a richer characterization of changes in the system’s behavior. A human subject study is carried out wherein participants learn to play a challenging and dynamic reaching game over multiple attempts, while donning an upper-body exoskeleton. The results demonstrate that repeated practice results in learning over time as identified through the improvement of extrinsic performance. Changes in the newly developed kinematics-based measure further illuminate how the participant’s intrinsic behavior is altered over the training period. Thus, we are able to quantify the changes in the human-exoskeleton system’s behavior observed in relation with learning.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

Disentangled Unsupervised Skill Discovery for Efficient Hierarchical Reinforcement Learning

NeurIPS, 2025
Jiaheng Hu*, Roberto Martin-Martin*, Peter Stone, Zizhao Wang*

A hallmark of intelligent agents is the ability to learn reusable skills purely from unsupervised interaction with the environment. However, existing unsupervised skill discovery methods often learn entangled skills where one skill variable simultaneously influences many ent…

  • HOME
  • Publications
  • Quantifying Changes in Kinematic Behavior of a Human-Exoskeleton Interactive System

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.