Authors

* External authors

Date

Share

Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

Catherine Weaver*

Roberto Capobianco

Peter R. Wurman

Peter Stone

Masayoshi Tomizuka*

* External authors

2024

Abstract

We employ sequences of high-order motion primitives for efficient online trajectory planning, enabling competitive racecar control even when the car deviates from an offline demonstration. Dynamic Movement Primitives (DMPs) utilize a target-driven non-linear differential equation combined with a set of perturbing weights to model arbitrary motion. The DMP's target-driven system ensures that online trajectories can be generated from the current state, returning to the demonstration. In racing, vehicles often operate at their handling limits, making precise control of acceleration dynamics essential for gaining an advantage in turns. We introduce the Acceleration goal (Acc. goal) DMP, extending the DMP's target system to accommodate accelerating targets. When sequencing DMPs to model long trajectories, our (Acc. goal DMP explicitly models acceleration at the junctions where one DMP meets its successor in the sequence. Applicable to DMP weights learned by any method, the proposed DMP generates trajectories with less aggressive acceleration and jerk during transitions between DMPs compared to second-order DMPs. Our proposed DMP sequencing method can recover from trajectory deviations, achieve competitive lap times, and maintain stable control in autonomous vehicle racing within the high-fidelity racing game Gran Turismo Sport.

Related Publications

SimBa: Simplicity Bias for Scaling Up Parameters in Deep Reinforcement Learning

ICLR, 2025
Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian, Peter R. Wurman, Jaegul Choo, Peter Stone, Takuma Seno

Recent advances in CV and NLP have been largely driven by scaling up the number of network parameters, despite traditional theories suggesting that larger networks are prone to overfitting. These large networks avoid overfitting by integrating components that induce a simpli…

Residual-MPPI: Online Policy Customization for Continuous Control

ICLR, 2025
Pengcheng Wang, Chenran Li, Catherine Weaver*, Kenta Kawamoto, Masayoshi Tomizuka*, Chen Tang*, Wei Zhan*

Policies learned through Reinforcement Learning (RL) and ImitationLearning (IL) have demonstrated significant potential in achieving advanced performance in continuous control tasks. However, in real-world environments, itis often necessary to further customize a trained pol…

Dobby: A Conversational Service Robot Driven by GPT-4

RO-MAN, 2025
Carson Stark, Bohkyung Chun, Casey Charleston, Varsha Ravi, Luis Pabon, Surya Sunkari, Tarun Mohan, Peter Stone, Justin Hart*

This work introduces a robotics platform which embeds a conversational AI agent in an embodied system for natural language understanding and intelligent decision-making for service tasks; integrating task planning and human-like conversation. The agent is derived from a larg…

  • HOME
  • Publications
  • Real-time Trajectory Generation via Dynamic Movement Primitives for Autonomous Racing

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.