Venue

Date

Share

RecipeBowl: A Cooking Recommender for Ingredients and Recipes using Set Transformer

Michael Spranger

Kana Maruyama

IEEE Access

2021

Abstract

Countless possibilities of recipe combinations challenge us to determine which additional ingredient goes well with others. In this work, we propose RecipeBowl which is a cooking recommendation system that takes a set of ingredients and cooking tags as input and suggests possible ingredient and recipe choices. We formulate a recipe completion task to train RecipeBowl on our constructed dataset where the model predicts a target ingredient previously eliminated from the original recipe. The RecipeBowl consists of a set encoder and a 2-way decoder for prediction. For the set encoder, we utilize the Set Transformer that builds meaningful set representations. Overall, our model builds a set representation of an leave-one-out recipe and maps it to the ingredient and recipe embedding space. Experimental results demonstrate the effectiveness of our approach. Furthermore, analysis on model predictions and interpretations show interesting insights related to cooking knowledge

Related Publications

Literature-based Hypothesis Generation: Predicting the evolution of scientific literature to support scientists

AI4X, 2025
Tarek R Besold, Uchenna Akujuobi, Samy Badreddine, Jihun Choi, Hatem ElShazly, Frederick Gifford, Chrysa Iliopoulou, Kana Maruyama, Kae Nagano, Pablo Sanchez Martin, Thiviyan Thanapalasingam, Alessandra Toniato, Christoph Wehner

Science is advancing at an increasingly quick pace, as evidenced, for instance, by the exponential growth in the number of published research articles per year [1]. On the one hand, this poses anincreasingly pressing challenge: Effectively navigating this ever-growing body o…

Stretching Each Dollar: Diffusion Training from Scratch on a Micro-Budget

CVPR, 2025
Vikash Sehwag, Xianghao Kong, Jingtao Li, Michael Spranger, Lingjuan Lyu

As scaling laws in generative AI push performance, they simultaneously concentrate the development of these models among actors with large computational resources. With a focus on text-to-image (T2I) generative models, we aim to unlock this bottleneck by demonstrating very l…

Argus: A Compact and Versatile Foundation Model for Vision

CVPR, 2025
Weiming Zhuang, Chen Chen, Zhizhong Li, Sina Sajadmanesh, Jingtao Li, Jiabo Huang, Vikash Sehwag, Vivek Sharma, Hirotaka Shinozaki, Felan Carlo Garcia, Yihao Zhan, Naohiro Adachi, Ryoji Eki, Michael Spranger, Peter Stone, Lingjuan Lyu

While existing vision and multi-modal foundation models can handle multiple computer vision tasks, they often suffer from significant limitations, including huge demand for data and computational resources during training and inconsistent performance across vision tasks at d…

  • HOME
  • Publications
  • RecipeBowl: A Cooking Recommender for Ingredients and Recipes using Set Transformer

JOIN US

Shape the Future of AI with Sony AI

We want to hear from those of you who have a strong desire
to shape the future of AI.